The role of PB1-F2 in adaptation of high pathogenicity avian influenza virus H7N7 in chickens.

H7N7 PB1-F2 apoptosis cellular immunity chicken polymerase replication survival tissue tropism virulence

Journal

Veterinary research
ISSN: 1297-9716
Titre abrégé: Vet Res
Pays: England
ID NLM: 9309551

Informations de publication

Date de publication:
03 Jan 2024
Historique:
received: 24 07 2023
accepted: 29 11 2023
medline: 4 1 2024
pubmed: 4 1 2024
entrez: 4 1 2024
Statut: epublish

Résumé

Avian influenza viruses (AIV) of the H7N7 subtype are enzootic in the wild bird reservoir in Europe, cause infections in poultry, and have sporadically infected humans. The non-structural protein PB1-F2 is encoded in a second open frame in the polymerase segment PB1 and its sequence varies with the host of origin. While mammalian isolates predominantly carry truncated forms, avian isolates typically express full-length PB1-F2. PB1-F2 is a virulence factor of influenza viruses in mammals. It modulates the host immune response, causing immunopathology and increases pro-inflammatory responses. The role of full-length PB1-F2 in IAV pathogenesis as well as its impact on virus adaptation and virulence in poultry remains enigmatic. Here, we characterised recombinant high pathogenicity AIV (HPAIV) H7N7 expressing or lacking PB1-F2 in vitro and in vivo in chickens. In vitro, full-length PB1-F2 modulated viability of infected chicken fibroblasts by limiting apoptosis. In chickens, PB1-F2 promoted gastrointestinal tropism, as demonstrated by enhanced viral replication in the gut and increased cloacal shedding. PB1-F2's effects on cellular immunity however were marginal. Overall, chickens infected with full-length PB1-F2 virus survived for shorter periods, indicating that PB1-F2 is also a virulence factor in bird-adapted viruses.

Identifiants

pubmed: 38173025
doi: 10.1186/s13567-023-01257-8
pii: 10.1186/s13567-023-01257-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5

Informations de copyright

© 2023. The Author(s).

Références

Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, Palese P, Shaw ML, Treanor J, Webster RG, Garcia-Sastre A (2018) Influenza. Nat Rev Dis Primers 4:3
pubmed: 29955068 pmcid: 7097467 doi: 10.1038/s41572-018-0002-y
European Food Safety A, Aznar I, Baldinelli F, Stoicescu A, Kohnle L (2022) Annual report on surveillance for avian influenza in poultry and wild birds in Member States of the European Union in 2021. EFSA J 20:e07554
Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179
pubmed: 1579108 pmcid: 372859 doi: 10.1128/mr.56.1.152-179.1992
Sutton TC (2018) The pandemic threat of emerging H5 and H7 avian influenza viruses. Viruses 10:461
pubmed: 30154345 pmcid: 6164301 doi: 10.3390/v10090461
de Bruin ACM, Funk M, Spronken MI, Gultyaev AP, Fouchier RAM, Richard M (2022) Hemagglutinin subtype specificity and mechanisms of highly pathogenic avian influenza virus genesis. Viruses 14:1566
pubmed: 35891546 pmcid: 9321182 doi: 10.3390/v14071566
He D, Gu M, Wang X, Yan Y, Li Y, Wang X, Hu S, Liu X (2023) Reintroduction of highly pathogenic avian influenza A H7N9 virus in southwestern China. Virus Genes 59:479–483
pubmed: 36781818 pmcid: 9924862 doi: 10.1007/s11262-023-01974-4
Navarro-Lopez R, Xu W, Gomez-Romero N, Velazquez-Salinas L, Berhane Y (2022) Phylogenetic inference of the 2022 highly pathogenic H7N3 avian influenza outbreak in Northern Mexico. Pathogens 11:1284
pubmed: 36365034 pmcid: 9692817 doi: 10.3390/pathogens11111284
Youk S, Lee DH, Ferreira HL, Afonso CL, Absalon AE, Swayne DE, Suarez DL, Pantin-Jackwood MJ (2019) Rapid evolution of Mexican H7N3 highly pathogenic avian influenza viruses in poultry. PLoS One 14:e0222457
pubmed: 31513638 pmcid: 6742402 doi: 10.1371/journal.pone.0222457
Abdelwhab EM, Veits J, Mettenleiter TC (2014) Prevalence and control of H7 avian influenza viruses in birds and humans. Epidemiol Infect 142:896–920
pubmed: 24423384 doi: 10.1017/S0950268813003324
Wong SS, Yuen KY (2006) Avian influenza virus infections in humans. Chest 129:156–168
pubmed: 16424427 doi: 10.1378/chest.129.1.156
Bosman A, Meijer A, Koopmans M (2005) Final analysis of Netherlands avian influenza outbreaks reveals much higher levels of transmission to humans than previously thought. Euro Surveill 10(E050106):2
Shi J, Zeng X, Cui P, Yan C, Chen H (2023) Alarming situation of emerging H5 and H7 avian influenza and effective control strategies. Emerg Microbes Infect 12:2155072
pubmed: 36458831 doi: 10.1080/22221751.2022.2155072
Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O’Neill R, Schickli J, Palese P, Henklein P, Bennink JR, Yewdell JW (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7:1306–1312
pubmed: 11726970 doi: 10.1038/nm1201-1306
Krumbholz A, Philipps A, Oehring H, Schwarzer K, Eitner A, Wutzler P, Zell R (2011) Current knowledge on PB1-F2 of influenza A viruses. Med Microbiol Immunol 200:69–75
pubmed: 20953627 doi: 10.1007/s00430-010-0176-8
Kamal RP, Alymova IV, York IA (2017) Evolution and virulence of influenza A virus protein PB1-F2. Int J Mol Sci 19:96
pubmed: 29286299 pmcid: 5796046 doi: 10.3390/ijms19010096
DeLuca DS, Keskin DB, Zhang GL, Reinherz EL, Brusic V (2011) PB1-F2 Finder: scanning influenza sequences for PB1-F2 encoding RNA segments. BMC Bioinformatics 12(Suppl 13):S6
pubmed: 22373288 pmcid: 3278846 doi: 10.1186/1471-2105-12-S13-S6
Kamal RP, Kumar A, Davis CT, Tzeng WP, Nguyen T, Donis RO, Katz JM, York IA (2015) Emergence of highly pathogenic avian influenza A(H5N1) virus PB1-F2 variants and their virulence in BALB/c mice. J Virol 89:5835–5846
pubmed: 25787281 pmcid: 4442455 doi: 10.1128/JVI.03137-14
Zell R, Krumbholz A, Eitner A, Krieg R, Halbhuber KJ, Wutzler P (2007) Prevalence of PB1-F2 of influenza A viruses. J Gen Virol 88:536–546
pubmed: 17251572 doi: 10.1099/vir.0.82378-0
Mazur I, Anhlan D, Mitzner D, Wixler L, Schubert U, Ludwig S (2008) The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein. Cell Microbiol 10:1140–1152
pubmed: 18182088 doi: 10.1111/j.1462-5822.2008.01116.x
Zamarin D, Ortigoza MB, Palese P (2006) Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J Virol 80:7976–7983
pubmed: 16873254 pmcid: 1563817 doi: 10.1128/JVI.00415-06
Iverson AR, Boyd KL, McAuley JL, Plano LR, Hart ME, McCullers JA (2011) Influenza virus primes mice for pneumonia from Staphylococcus aureus. J Infect Dis 203:880–888
pubmed: 21278211 pmcid: 3071123 doi: 10.1093/infdis/jiq113
Dudek SE, Wixler L, Nordhoff C, Nordmann A, Anhlan D, Wixler V, Ludwig S (2011) The influenza virus PB1-F2 protein has interferon antagonistic activity. Biol Chem 392:1135–1144
pubmed: 22050228 doi: 10.1515/BC.2011.174
Le Goffic R, Bouguyon E, Chevalier C, Vidic J, Da Costa B, Leymarie O, Bourdieu C, Decamps L, Dhorne-Pollet S, Delmas B (2010) Influenza A virus protein PB1-F2 exacerbates IFN-beta expression of human respiratory epithelial cells. J Immunol 185:4812–4823
pubmed: 20844191 doi: 10.4049/jimmunol.0903952
McAuley JL, Chipuk JE, Boyd KL, Van De Velde N, Green DR, McCullers JA (2010) PB1-F2 proteins from H5N1 and 20 century pandemic influenza viruses cause immunopathology. PLoS Pathog 6:e1001014
pubmed: 20661425 pmcid: 2908617 doi: 10.1371/journal.ppat.1001014
James J, Howard W, Iqbal M, Nair VK, Barclay WS, Shelton H (2016) Influenza A virus PB1-F2 protein prolongs viral shedding in chickens lengthening the transmission window. J Gen Virol 97:2516–2527
pubmed: 27558742 pmcid: 5078828 doi: 10.1099/jgv.0.000584
Leymarie O, Embury-Hyatt C, Chevalier C, Jouneau L, Moroldo M, Da Costa B, Berhane Y, Delmas B, Weingartl HM, Le Goffic R (2014) PB1-F2 attenuates virulence of highly pathogenic avian H5N1 influenza virus in chickens. PLoS One 9:e100679
pubmed: 24959667 pmcid: 4069075 doi: 10.1371/journal.pone.0100679
Schmolke M, Manicassamy B, Pena L, Sutton T, Hai R, Varga ZT, Hale BG, Steel J, Perez DR, Garcia-Sastre A (2011) Differential contribution of PB1-F2 to the virulence of highly pathogenic H5N1 influenza A virus in mammalian and avian species. PLoS Pathog 7:e1002186
pubmed: 21852950 pmcid: 3154844 doi: 10.1371/journal.ppat.1002186
Mettier J, Marc D, Sedano L, Da Costa B, Chevalier C, Le Goffic R (2021) Study of the host specificity of PB1-F2-associated virulence. Virulence 12:1647–1660
pubmed: 34125653 pmcid: 8205076 doi: 10.1080/21505594.2021.1933848
Choi JW, Shin EK, Ha SH, Kim HA, Kim YH, Kim JS, Hahn TW (2007) Optimal conditions for cryopreservation of primary chicken embryo kidney cells with dimethyl sulfoxide. Mol Biotechnol 35:237–241
pubmed: 17652787 doi: 10.1007/BF02686009
Dietze K, Graaf A, Homeier-Bachmann T, Grund C, Forth L, Pohlmann A, Jeske C, Wintermann M, Beer M, Conraths FJ, Harder T (2018) From low to high pathogenicity-characterization of H7N7 avian influenza viruses in two epidemiologically linked outbreaks. Transbound Emerg Dis 65:1576–1587
pubmed: 29790657 doi: 10.1111/tbed.12906
Scheibner D, Ulrich R, Fatola OI, Graaf A, Gischke M, Salaheldin AH, Harder TC, Veits J, Mettenleiter TC, Abdelwhab EM (2019) Variable impact of the hemagglutinin polybasic cleavage site on virulence and pathogenesis of avian influenza H7N7 virus in chickens, turkeys and ducks. Sci Rep 9:11556
pubmed: 31399610 pmcid: 6689016 doi: 10.1038/s41598-019-47938-3
Stech J, Stech O, Herwig A, Altmeppen H, Hundt J, Gohrbandt S, Kreibich A, Weber S, Klenk HD, Mettenleiter TC (2008) Rapid and reliable universal cloning of influenza A virus genes by target-primed plasmid amplification. Nucleic Acids Res 36:e139
pubmed: 18832366 pmcid: 2588516 doi: 10.1093/nar/gkn646
Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97:6108–6113
pubmed: 10801978 pmcid: 18566 doi: 10.1073/pnas.100133697
Mostafa A, Blaurock C, Scheibner D, Muller C, Blohm U, Schafer A, Gischke M, Salaheldin AH, Nooh HZ, Ali MA, Breithaupt A, Mettenleiter TC, Pleschka S, Abdelwhab EM (2020) Genetic incompatibilities and reduced transmission in chickens may limit the evolution of reassortants between H9N2 and panzootic H5N8 clade 2344 avian influenza virus showing high virulence for mammals. Virus Evol 6:veaa077
pubmed: 33343923 pmcid: 7733613 doi: 10.1093/ve/veaa077
Henritzi D, Hoffmann B, Wacheck S, Pesch S, Herrler G, Beer M, Harder TC (2019) A newly developed tetraplex real-time RT-PCR for simultaneous screening of influenza virus types A, B, C and D. Influenza Other Respir Viruses 13:71–82
pubmed: 30264926 doi: 10.1111/irv.12613
Graaf A, Ulrich R, Maksimov P, Scheibner D, Koethe S, Abdelwhab EM, Mettenleiter TC, Beer M, Harder T (2018) A viral race for primacy: co-infection of a natural pair of low and highly pathogenic H7N7 avian influenza viruses in chickens and embryonated chicken eggs. Emerg Microbes Infect 7:204
pubmed: 30514922 pmcid: 6279742 doi: 10.1038/s41426-018-0204-0
Chang P, Kuchipudi SV, Mellits KH, Sebastian S, James J, Liu J, Shelton H, Chang KC (2015) Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and pro-inflammatory dysregulation. Sci Rep 5:17999
pubmed: 26642934 pmcid: 4672291 doi: 10.1038/srep17999
Bonneville M, O’Brien RL, Born WK (2010) Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 10:467–478
pubmed: 20539306 doi: 10.1038/nri2781
McAuley JL, Zhang K, McCullers JA (2010) The effects of influenza A virus PB1-F2 protein on polymerase activity are strain specific and do not impact pathogenesis. J Virol 84:558–564
pubmed: 19828614 doi: 10.1128/JVI.01785-09
Chen CJ, Chen GW, Wang CH, Huang CH, Wang YC, Shih SR (2010) Differential localization and function of PB1-F2 derived from different strains of influenza A virus. J Virol 84:10051–10062
pubmed: 20660199 pmcid: 2937816 doi: 10.1128/JVI.00592-10
Meunier I, von Messling V (2012) PB1-F2 modulates early host responses but does not affect the pathogenesis of H1N1 seasonal influenza virus. J Virol 86:4271–4278
pubmed: 22318139 pmcid: 3318652 doi: 10.1128/JVI.07243-11
Alymova IV, York IA, McCullers JA (2014) Non-avian animal reservoirs present a source of influenza A PB1-F2 proteins with novel virulence-enhancing markers. PLoS One 9:e111603
pubmed: 25368997 pmcid: 4219726 doi: 10.1371/journal.pone.0111603
Zmasek CM, Godzik A (2013) Evolution of the animal apoptosis network. Cold Spring Harb Perspect Biol 5:a008649
pubmed: 23457257 pmcid: 3578353 doi: 10.1101/cshperspect.a008649
Deventhiran J, Kumar SR, Raghunath S, Leroith T, Elankumaran S (2016) PB1-F2 protein does not impact the virulence of triple-reassortant H3N2 swine influenza virus in pigs but alters pathogenicity and transmission in turkeys. J Virol 90:222–231
pubmed: 26468540 doi: 10.1128/JVI.01551-15
Starick E, Fereidouni SR, Lange E, Grund C, Vahlenkamp T, Beer M, Harder TC (2011) Analysis of influenza A viruses of subtype H1 from wild birds, turkeys and pigs in Germany reveals interspecies transmission events. Influenza Other Respir Viruses 5:276–284
pubmed: 21651738 pmcid: 4634544 doi: 10.1111/j.1750-2659.2011.00201.x
Health EPoA, Welfare, More S, Bicout D, Botner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortazar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Thulke HH, Velarde A, Willeberg P, Winckler C, Breed A, Brouwer A, Guillemain M, Harder T, Monne I, Roberts H, Baldinelli F, Barrucci F et al. (2017) Avian influenza. EFSA J 15:e04991
Naguib MM, Verhagen JH, Mostafa A, Wille M, Li R, Graaf A, Jarhult JD, Ellstrom P, Zohari S, Lundkvist A, Olsen B (2019) Global patterns of avian influenza A (H7): virus evolution and zoonotic threats. FEMS Microbiol Rev 43:608–621
pubmed: 31381759 pmcid: 8038931 doi: 10.1093/femsre/fuz019
Caliendo V, Leijten L, Begeman L, Poen MJ, Fouchier RAM, Beerens N, Kuiken T (2020) Enterotropism of highly pathogenic avian influenza virus H5N8 from the 2016/2017 epidemic in some wild bird species. Vet Res 51:117
pubmed: 32928280 pmcid: 7491185 doi: 10.1186/s13567-020-00841-6
Gotur SP, Wadhwan V (2020) Tingible body macrophages. J Oral Maxillofac Pathol 24:418–420
pubmed: 33967475 doi: 10.4103/jomfp.JOMFP_314_2
Elmore SA (2006) Enhanced histopathology of the thymus. Toxicol Pathol 34:656–665
pubmed: 17067951 pmcid: 1800589 doi: 10.1080/01926230600865556
Xu G, Shi Y (2007) Apoptosis signaling pathways and lymphocyte homeostasis. Cell Res 17:759–771
pubmed: 17576411 doi: 10.1038/cr.2007.52
McAuley JL, Hornung F, Boyd KL, Smith AM, McKeon R, Bennink J, Yewdell JW, McCullers JA (2007) Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe 2:240–249
pubmed: 18005742 pmcid: 2083255 doi: 10.1016/j.chom.2007.09.001
Leymarie O, Jouvion G, Herve PL, Chevalier C, Lorin V, Lecardonnel J, Da Costa B, Delmas B, Escriou N, Le Goffic R (2013) Kinetic characterization of PB1-F2-mediated immunopathology during highly pathogenic avian H5N1 influenza virus infection. PLoS One 8:e57894
pubmed: 23469251 pmcid: 3585811 doi: 10.1371/journal.pone.0057894
Sabbaghi A, Miri SM, Keshavarz M, Mahooti M, Zebardast A, Ghaemi A (2020) Role of gammadelta T cells in controlling viral infections with a focus on influenza virus: implications for designing novel therapeutic approaches. Virol J 17:174
pubmed: 33183352 pmcid: 7659406 doi: 10.1186/s12985-020-01449-0
Laursen AMS, Kulkarni RR, Taha-Abdelaziz K, Plattner BL, Read LR, Sharif S (2018) Characterizaton of gamma delta T cells in Marek’s disease virus (Gallid herpesvirus 2) infection of chickens. Virology 522:56–64
pubmed: 30014858 doi: 10.1016/j.virol.2018.06.014
Fenzl L, Gobel TW, Neulen ML (2017) gammadelta T cells represent a major spontaneously cytotoxic cell population in the chicken. Dev Comp Immunol 73:175–183
pubmed: 28377199 doi: 10.1016/j.dci.2017.03.028
Quere P, Cooper MD, Thorbecke GJ (1990) Characterization of suppressor T cells for antibody production by chicken spleen cells. I. Antigen-induced suppressor cells are CT8+, TcR1+ (gamma delta) T cells. Immunology 71:517–522
pubmed: 2149122 pmcid: 1384872

Auteurs

Luise Hohensee (L)

Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
Infection Pathogenesis, TUM School of Life Sciences, Technische Universität München, 85354, Freising, Germany.

David Scheibner (D)

Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany.

Alexander Schäfer (A)

Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany.

Holly Shelton (H)

The Pirbright Institute, Pirbright, Ash Road, Surrey, GU24 0NF, UK.

Thomas C Mettenleiter (TC)

Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany.

Angele Breithaupt (A)

Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany.

Anca Dorhoi (A)

Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany.

Elsayed M Abdelwhab (EM)

Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany.

Ulrike Blohm (U)

Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany. ulrike.blohm@fli.de.

Classifications MeSH