Cell type-specific connectome predicts distributed working memory activity in the mouse brain.

mouse neuroscience

Journal

eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614

Informations de publication

Date de publication:
04 Jan 2024
Historique:
received: 08 12 2022
accepted: 14 12 2023
medline: 4 1 2024
pubmed: 4 1 2024
entrez: 4 1 2024
Statut: aheadofprint

Résumé

Recent advances in connectome and neurophysiology make it possible to probe whole-brain mechanisms of cognition and behavior. We developed a large-scale model of the mouse multiregional brain for a cardinal cognitive function called working memory, the brain's ability to internally hold and process information without sensory input. The model is built on mesoscopic connectome data for inter-areal cortical connections and endowed with a macroscopic gradient of measured parvalbumin-expressing interneuron density. We found that working memory coding is distributed yet exhibits modularity; the spatial pattern of mnemonic representation is determined by long-range cell type-specific targeting and density of cell classes. Cell type-specific graph measures predict the activity patterns and a core subnetwork for memory maintenance. The model shows numerous self-sustained internal states (each engaging a distinct subset of areas). This work provides a framework to interpret large-scale recordings of brain activity during cognition, while highlighting the need for cell type-specific connectomics.

Identifiants

pubmed: 38174734
doi: 10.7554/eLife.85442
pii: 85442
doi:
pii:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIH HHS
ID : R01MH062349
Pays : United States
Organisme : NIH HHS
ID : U19NS123714
Pays : United States
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/X013243/1
Pays : United Kingdom
Organisme : NIH HHS
ID : U19NS123714
Pays : United States

Informations de copyright

© 2023, Ding et al.

Déclaration de conflit d'intérêts

XD, SF, JJ, JJ, XW The authors declare that no competing interests exist.

Auteurs

Xingyu Ding (X)

Center for Neural Science, New York University, New York, United States.

Sean Froudist-Walsh (S)

Bristol Computational Neuroscience Unit, University of Bristol, Bristol, United Kingdom.

Jorge Jaramillo (J)

Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany.

Junjie Jiang (J)

Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, China.

Xiao-Jing Wang (XJ)

Center for Neural Science, New York University, New York, United States.

Classifications MeSH