Associations of dietary choline and betaine with all-cause mortality: a prospective study in a large Swedish cohort.
Betaine
Choline
Mortality
Phosphatidylcholine
Prospective cohort
Västerbotten Intervention Programme
Journal
European journal of nutrition
ISSN: 1436-6215
Titre abrégé: Eur J Nutr
Pays: Germany
ID NLM: 100888704
Informations de publication
Date de publication:
Apr 2024
Apr 2024
Historique:
received:
07
03
2023
accepted:
01
12
2023
pubmed:
4
1
2024
medline:
4
1
2024
entrez:
4
1
2024
Statut:
ppublish
Résumé
Investigate the association between choline and betaine intake and all-cause mortality in a large Swedish cohort. Women (52,246) and men (50,485) attending the Västerbotten Intervention Programme 1990-2016 were included. Cox proportional hazard regression models adjusted for energy intake, age, BMI, smoking, education, and physical activity were used to estimate mortality risk according to betaine, total choline, phosphatidylcholine, glycerophosphocholine, phosphocholine, sphingomyelin, and free choline intakes [continuous (per 50 mg increase) and in quintiles]. During a median follow-up of 16 years, 3088 and 4214 deaths were registered in women and men, respectively. Total choline intake was not associated with all-cause mortality in women (HR 1.01; 95% CI 0.97, 1.06; P = 0.61) or men (HR 1.01; 95% CI 0.98, 1.04; P = 0.54). Betaine intake was associated with decreased risk of all-cause mortality in women (HR 0.95; 95% CI 0.91, 0.98; P < 0.01) but not in men. Intake of free choline was negatively associated with risk of all-cause mortality in women (HR 0.98; 95% CI 0.96, 1.00; P = 0.01). No other associations were found between intake of the different choline compounds and all-cause mortality. In women aged ≥ 55 years, phosphatidylcholine intake was positively associated with all-cause mortality. In men with higher folate intake, total choline intake was positively associated with all-cause mortality. Overall, our results do not support that intake of total choline is associated with all-cause mortality. However, some associations were modified by age and with higher folate intake dependent on sex. Higher intake of betaine was associated with lower risk of all-cause mortality in women.
Identifiants
pubmed: 38175250
doi: 10.1007/s00394-023-03300-y
pii: 10.1007/s00394-023-03300-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
785-796Informations de copyright
© 2024. The Author(s).
Références
Ueland PM (2011) Choline and betaine in health and disease. J Inherit Metab Dis 34(1):3–15. https://doi.org/10.1007/s10545-010-9088-4
doi: 10.1007/s10545-010-9088-4
pubmed: 20446114
Li Z, Vance DE (2008) Phosphatidylcholine and choline homeostasis. J Lipid Res 49(6):1187–1194. https://doi.org/10.1194/jlr.R700019-JLR200
doi: 10.1194/jlr.R700019-JLR200
pubmed: 18204095
EFSA Panel on dietetic products naaN (2016) Dietary references values for choline. EFSA J 14(8):4484. https://doi.org/10.2903/j.efsa.2016.4484
doi: 10.2903/j.efsa.2016.4484
Vennemann FB, Ioannidou S, Valsta LM, Dumas C, Ocke MC, Mensink GB, Lindtner O, Virtanen SM, Tlustos C, D’Addezio L, Mattison I, Dubuisson C, Siksna I, Heraud F (2015) Dietary intake and food sources of choline in European populations. Br J Nutr. https://doi.org/10.1017/S0007114515003700
doi: 10.1017/S0007114515003700
pubmed: 26423357
Ross AB, Zangger A, Guiraud SP (2014) Cereal foods are the major source of betaine in the Western diet–analysis of betaine and free choline in cereal foods and updated assessments of betaine intake. Food Chem 145:859–865. https://doi.org/10.1016/j.foodchem.2013.08.122
doi: 10.1016/j.foodchem.2013.08.122
pubmed: 24128557
Steenge GR, Verhoef P, Katan MB (2003) Betaine supplementation lowers plasma homocysteine in healthy men and women. J Nutr 133(5):1291–1295
doi: 10.1093/jn/133.5.1291
pubmed: 12730412
Cho E, Zeisel SH, Jacques P, Selhub J, Dougherty L, Colditz GA, Willett WC (2006) Dietary choline and betaine assessed by food-frequency questionnaire in relation to plasma total homocysteine concentration in the Framingham Offspring Study. Am J Clin Nutr 83(4):905–911
doi: 10.1093/ajcn/83.4.905
pubmed: 16600945
Detopoulou P, Panagiotakos DB, Antonopoulou S, Pitsavos C, Stefanadis C (2008) Dietary choline and betaine intakes in relation to concentrations of inflammatory markers in healthy adults: the ATTICA study. Am J Clin Nutr 87(2):424–430
doi: 10.1093/ajcn/87.2.424
pubmed: 18258634
Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368(17):1575–1584. https://doi.org/10.1056/NEJMoa1109400
doi: 10.1056/NEJMoa1109400
pubmed: 23614584
pmcid: 3701945
Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L (2017) Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J Am Heart Assoc. https://doi.org/10.1161/JAHA.116.004947
doi: 10.1161/JAHA.116.004947
pubmed: 28663251
pmcid: 5586261
Mazidi M, Katsiki N, Mikhailidis DP, Banach M (2019) Dietary choline is positively related to overall and cause-specific mortality: results from individuals of the National Health and Nutrition Examination Survey and pooling prospective data. Br J Nutr 122(11):1262–1270. https://doi.org/10.1017/S0007114519001065
doi: 10.1017/S0007114519001065
pubmed: 31288869
Zheng Y, Li Y, Rimm EB, Hu FB, Albert CM, Rexrode KM, Manson JE, Qi L (2016) Dietary phosphatidylcholine and risk of all-cause and cardiovascular-specific mortality among US women and men. Am J Clin Nutr. https://doi.org/10.3945/ajcn.116.131771
doi: 10.3945/ajcn.116.131771
pubmed: 28031191
pmcid: 5267309
Yang JJ, Lipworth LP, Shu XO, Blot WJ, Xiang YB, Steinwandel MD, Li H, Gao YT, Zheng W, Yu D (2020) Associations of choline-related nutrients with cardiometabolic and all-cause mortality: results from 3 prospective cohort studies of blacks, whites, and Chinese. Am J Clin Nutr 111(3):644–656. https://doi.org/10.1093/ajcn/nqz318
doi: 10.1093/ajcn/nqz318
pubmed: 31915809
pmcid: 7049525
Nagata C, Wada K, Tamura T, Konishi K, Kawachi T, Tsuji M, Nakamura K (2015) Choline and betaine intakes are not associated with cardiovascular disease mortality in Japanese men and women. J Nutr. https://doi.org/10.3945/jn.114.209296
doi: 10.3945/jn.114.209296
pubmed: 26063062
Youn J, Cho E, Lee JE (2019) Association of choline and betaine levels with cancer incidence and survival: a meta-analysis. Clin Nutr 38(1):100–109. https://doi.org/10.1016/j.clnu.2018.01.042
doi: 10.1016/j.clnu.2018.01.042
pubmed: 29606601
Bailey RL, Dog TL, Smith-Ryan AE, Das SK, Baker FC, Madak-Erdogan Z, Hammond BR, Sesso HD, Eapen A, Mitmesser SH, Wong A, Nguyen H (2022) Sex differences across the life course: a focus on unique nutritional and health considerations among women. J Nutr 152(7):1597–1610. https://doi.org/10.1093/jn/nxac059
doi: 10.1093/jn/nxac059
pubmed: 35294009
pmcid: 9258555
Fischer LM, daCosta KA, Kwock L, Stewart PW, Lu TS, Stabler SP, Allen RH, Zeisel SH (2007) Sex and menopausal status influence human dietary requirements for the nutrient choline. Am J Clin Nutr 85(5):1275–1285
doi: 10.1093/ajcn/85.5.1275
pubmed: 17490963
Norberg M, Wall S, Boman K, Weinehall L (2010) The Vasterbotten Intervention Programme: background, design and implications. Glob Health Action. https://doi.org/10.3402/gha.v3i0.4643
doi: 10.3402/gha.v3i0.4643
pubmed: 21160918
pmcid: 3002098
Weinehall L, Hallgren CG, Westman G, Janlert U, Wall S (1998) Reduction of selection bias in primary prevention of cardiovascular disease through involvement of primary health care. Scand J Prim Health Care 16(3):171–176. https://doi.org/10.1080/028134398750003133
doi: 10.1080/028134398750003133
pubmed: 9800231
Schofield C (1985) An annotated bibliography of source material for basal metabolic rate data. Hum Nutr Clin Nutr 39(Suppl 1):42–91
pubmed: 3900006
The National Food Administration's food database, version 30/05/2013 http://www7.slv.se/Naringssok/soklivsmedel.aspx Used: 2013-07-03
Johansson I, Hallmans G, Wikman A, Biessy C, Riboli E, Kaaks R (2002) Validation and calibration of food-frequency questionnaire measurements in the Northern Sweden Health and Disease cohort. Public Health Nutr 5(3):487–496. https://doi.org/10.1079/phn2001315
doi: 10.1079/phn2001315
pubmed: 12003662
Johansson I, Van Guelpen B, Hultdin J, Johansson M, Hallmans G, Stattin P (2010) Validity of food frequency questionnaire estimated intakes of folate and other B vitamins in a region without folic acid fortification. Eur J Clin Nutr 64(8):905–913. https://doi.org/10.1038/ejcn.2010.80
doi: 10.1038/ejcn.2010.80
pubmed: 20502473
Patterson KY, Bhagwat SA, Williams JR, Howe JC, Holden JM USDA Database for the choline content of common foods, release two, January 2008. http://www.ars.usda.gov/services/docs.htm?docid=6232 . Accessed 23 Apr 2014
Richard C, Lewis ED, Zhao YY, Asomaning J, Jacobs RL, Field CJ, Curtis JM (2016) Measurement of the total choline content in 48 commercial dairy products or dairy alternatives. J Food Compos Anal 45:1–8
doi: 10.1016/j.jfca.2015.09.009
InterAct C, Peters T, Brage S, Westgate K, Franks PW, Gradmark A, Tormo Diaz MJ, Huerta JM, Bendinelli B, Vigl M, Boeing H, Wendel-Vos W, Spijkerman A, Benjaminsen-Borch K, Valanou E, de Lauzon GB, Clavel-Chapelon F, Sharp S, Kerrison N, Langenberg C, Arriola L, Barricarte A, Gonzales C, Grioni S, Kaaks R, Key T, Khaw KT, May A, Nilsson P, Norat T, Overvad K, Palli D, Panico S, Ramon Quiros J, Ricceri F, Sanchez MJ, Slimani N, Tjonneland A, Tumino R, Feskins E, Riboli E, Ekelund U, Wareham N (2012) Validity of a short questionnaire to assess physical activity in 10 European countries. Eur J Epidemiol 27(1):15–25. https://doi.org/10.1007/s10654-011-9625-y
doi: 10.1007/s10654-011-9625-y
Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65(4):1220S-1228S (discussion 1229S-1231S)
doi: 10.1093/ajcn/65.4.1220S
pubmed: 9094926
Harrell F (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis, 1st edn. Springe-Verlag, New York
doi: 10.1007/978-1-4757-3462-1
da Costa KA, Corbin KD, Niculescu MD, Galanko JA, Zeisel SH (2014) Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups. FASEB J 28(7):2970–2978. https://doi.org/10.1096/fj.14-249557
doi: 10.1096/fj.14-249557
pubmed: 24671709
pmcid: 4062831
Liu S, Wang D, Li B, Li K, Dai X, Cheng L, Wang J, Huang T, Tang Y, Xiao Y (2022) Dietary betaine intake and risk of mortality in patients with coronary artery disease: the prospective Guangdong coronary artery disease cohort. Br J Nutr. https://doi.org/10.1017/S0007114522002975
doi: 10.1017/S0007114522002975
pubmed: 36539976
pmcid: 9876811
Cho CE, Caudill MA (2017) Trimethylamine-N-oxide: friend, foe, or simply caught in the cross-fire? Trends Endocrinol Metab 28(2):121–130. https://doi.org/10.1016/j.tem.2016.10.005
doi: 10.1016/j.tem.2016.10.005
pubmed: 27825547
Clarke R, Halsey J, Lewington S, Lonn E, Armitage J, Manson JE, Bonaa KH, Spence JD, Nygard O, Jamison R, Gaziano JM, Guarino P, Bennett D, Mir F, Peto R, Collins R, Collaboration BVTT (2010) Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals. Arch Intern Med 170(18):1622–1631. https://doi.org/10.1001/archinternmed.2010.348
doi: 10.1001/archinternmed.2010.348
pubmed: 20937919
Anderson OS, Sant KE, Dolinoy DC (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 23(8):853–859. https://doi.org/10.1016/j.jnutbio.2012.03.003
doi: 10.1016/j.jnutbio.2012.03.003
pubmed: 22749138
pmcid: 3405985
Zeisel S (2017) Choline, other methyl-donors and epigenetics. Nutrients. https://doi.org/10.3390/nu9050445
doi: 10.3390/nu9050445
pubmed: 29271883
pmcid: 5793232