Effect of applied cadence in repeated sprint cycling on muscle characteristics.

Muscle–tendon unit Myotonometry Sprint performance Ultrasonography

Journal

European journal of applied physiology
ISSN: 1439-6327
Titre abrégé: Eur J Appl Physiol
Pays: Germany
ID NLM: 100954790

Informations de publication

Date de publication:
04 Jan 2024
Historique:
received: 17 06 2023
accepted: 29 11 2023
medline: 4 1 2024
pubmed: 4 1 2024
entrez: 4 1 2024
Statut: aheadofprint

Résumé

This study aimed to investigate physiological responses, muscle-tendon unit properties of the quadriceps muscle, and mechanical performance after repeated sprint cycling at optimal and 70% of optimal cadence. Twenty recreational cyclists performed as first sprint performance cycling test and during subsequent sessions two repeated sprint cycling protocols at optimal and 70% of optimal cadence, in random order. The muscle-tendon unit outcome measures on the dominant leg included muscle thickness, fascicle length (L The results showed an increase in muscle thickness and θ The present study revealed that the alterations in muscle characteristics were more marked after repeated sprint cycling at optimal cadence compared with a lower cadence most likely as a result of higher load on the muscle-tendon unit at optimal cadence.

Identifiants

pubmed: 38175273
doi: 10.1007/s00421-023-05393-z
pii: 10.1007/s00421-023-05393-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Akademia Wychowania Fizycznego we Wrocławiu
ID : PN/BK/2021/03

Informations de copyright

© 2024. The Author(s).

Références

Abbiss CR, Peiffer JJ, Laursen PB (2009) Optimal cadence selection during cycling. Int SportMed J 10(1):1–15
Ansley L, Cangley PJ (2009) Determinants of “optimal” cadence during cycling. Eur J Sport Sci 9(2):61–85
doi: 10.1080/17461390802684325
Austin N, Nilwik R (2010) Herzog W (2010) In vivo operational fascicle lengths of vastus lateralis during sub-maximal and maximal cycling. J Biomech 43(12):2394–2399
pubmed: 20452597 doi: 10.1016/j.jbiomech.2010.04.016
Baumgart E (2000) Stiffness–an unknown world of mechanical science? Injury 31(Suppl. 2):B14–B23
Bieuzen F, Lepers R, Vercruyssen F, Hausswirth C, Brisswalter J (2007) Muscle activation during cycling at different cadences: effect of maximal strength capacity. J Electromyogr Kinesiol 17(6):731–738
pubmed: 16996277 doi: 10.1016/j.jelekin.2006.07.007
Blazevich AJ, Gill ND, Zhou SJ (2006) Intra-and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat 209(3):289–310
pubmed: 16928199 pmcid: 2100333 doi: 10.1111/j.1469-7580.2006.00619.x
Bouillard K, Jubeau M, Nordez A, Hug F (2014) Effect of vastus lateralis fatigue on load sharing between quadriceps femoris muscles during isometric knee extensions. J Neurophysiol 111(4):768–776
pubmed: 24259546 doi: 10.1152/jn.00595.2013
Brancaccio P, Limongelli FM, D’Aponte A, Narici M, Maffulli N (2008) Changes in skeletal muscle architecture following a cycloergometer test to exhaustion in athletes. J Sci Med Sport 11(6):538–541
pubmed: 17905658 doi: 10.1016/j.jsams.2007.05.011
Brennan SF, Cresswell AG, Farris DJ, Lichtwark GA (2018) The effect of muscle–tendon unit vs. fascicle analyses on vastus lateralis force-generating capacity during constant power output cycling with variable cadence. J Appl Physiol 124(4):993–1002
pubmed: 29357487 doi: 10.1152/japplphysiol.00356.2017
Brennan SF, Cresswell AG, Farris DJ, Lichtwark GA (2019) The effect of cadence on the mechanics and energetics of constant power cycling. Med Sci Sports Exerc 51(5):941–950
pubmed: 30531486 doi: 10.1249/MSS.0000000000001863
Calbet JA, De Paz JA, Garatachea N, Cabeza de Vaca S, Chavarren J (2003) Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. J Appl Physiol 94(2):668–676
pubmed: 12391104 doi: 10.1152/japplphysiol.00128.2002
Cipryan L, Tschakert G, Hofmann P (2017) Acute and post-exercise physiological responses to high-intensity interval training in endurance and sprint athletes. J Sports Sci Med 16(2):219–229
pubmed: 28630575 pmcid: 5465984
Csapo R, Alegre LM, Baron RJ (2011) Time kinetics of acute changes in muscle architecture in response to resistance exercise. J Sci Med Sport 14(3):270–274
pubmed: 21411367 doi: 10.1016/j.jsams.2011.02.003
Dorel S, Hautier CA, Rambaud O (2005) Torque and power–velocity relationships in cycling: relevance to track sprint performance in world-class cyclists. Int J Sports Med 26(9):739–746
pubmed: 16237619 doi: 10.1055/s-2004-830493
Driss T, Vandewalle H, Chevalier J-ML, Monod HJ (2002) Force-velocity relationship on a cycle ergometer and knee-extensor strength indices. Can J Appl Physiol 27(3):250–262
pubmed: 12180317 doi: 10.1139/h02-015
Duché P, Ducher G, Lazzer S (2002) Peak power in obese and nonobese adolescents: effects of gender and braking force. Med Sci Sports Exerc 34(12):2072–2078
pubmed: 12471318 doi: 10.1097/00005768-200212000-00031
Ema R, Wakahara T, Miyamoto N, Kanehisa H, Kawakami Y (2013) Inhomogeneous architectural changes of the quadriceps femoris induced by resistance training. Eur J Appl Physiol 113:2691–2703
pubmed: 23949789 doi: 10.1007/s00421-013-2700-1
Engelina S, Robertson CJ, Moggridge J, Killingback A, Adds P (2014) Using ultrasound to measure the fibre angle of vastus medialis oblique: a cadaveric validation study. Knee 21(1):107–111
pubmed: 22819896 doi: 10.1016/j.knee.2012.07.001
Fisker F, Kildegaard S, Thygesen M, Grosen K, Pfeiffer-Jensen M (2017) Acute tendon changes in intense CrossFit workout: an observational cohort study. Scand J Med Sci Sports 27(11):1258–1262
pubmed: 27714843 doi: 10.1111/sms.12781
Franchi MV, Fitze DP, Raiteri BJ, Hahn D, Spörri J (2020) Ultrasound-derived biceps femoris long head fascicle length: extrapolation pitfalls. Med Sci Sports Exerc 52(1):233–243
pubmed: 31403609 doi: 10.1249/MSS.0000000000002123
Gardner AS, Martin JC, Martin DT, Barras M, Jenkins D (2007) Maximal torque-and power-pedaling rate relationships for elite sprint cyclists in laboratory and field tests. Eur J Appl Physiol 101:287–292
pubmed: 17562069 doi: 10.1007/s00421-007-0498-4
Gennisson JL, Deffieux T, Mace E, Montaldo G, Fink M, Tanter M (2010) Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 36:789–801
pubmed: 20420970 doi: 10.1016/j.ultrasmedbio.2010.02.013
Hannafin JA, Arnoczky SP (1994) Effect of cyclic and static tensile loading on water content and solute diffusion in canine flexor tendons: an in vitro study. J Orthop Res 12(3):350–356
pubmed: 8207588 doi: 10.1002/jor.1100120307
Hansen EA, Rønnestad BR (2017) Effects of cycling training at imposed low cadences: a systematic review. Int J Sports Physiol Perform 12(9):1127–1136
pubmed: 28095074 doi: 10.1123/ijspp.2016-0574
Hansen EA, Andersen JL, Nielsen JS, Sjøgaard G (2002) Muscle fibre type, efficiency, and mechanical optima affect freely chosen pedal rate during cycling. Acta Physiol Scand 176(3):185–194
pubmed: 12392498 doi: 10.1046/j.1365-201X.2002.01032.x
Harnish C, King D, Swensen T (2007) Effect of cycling position on oxygen uptake and preferred cadence in trained cyclists during hill climbing at various power outputs. Eur J Appl Physiol 99(4):387–391
pubmed: 17165053 doi: 10.1007/s00421-006-0358-7
Hodson-Tole EF, Blake OM, Wakeling JM (2020) During cycling what limits maximum mechanical power output at cadences above 120 rpm? Med Sci Sports Exerc 52(1):214
pubmed: 31389907 doi: 10.1249/MSS.0000000000002096
Kawakami Y, Abe T, Fukunaga T (1993) Muscle–fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol 74(6):2740–2744
pubmed: 8365975 doi: 10.1152/jappl.1993.74.6.2740
Kayala KMN, Dickinson GD, Minassian A, Walls KC, Green KN, LaFerla FM (2012) Presenilin-null cells have altered two-pore calcium channel expression and lysosomal calcium: implications for lysosomal function. Brain Res 1489:8–16
pmcid: 3516298 doi: 10.1016/j.brainres.2012.10.036
Klich S, Ficek K, Krymski I, Klimek A, Kawczyński A, Madeleine P, Fernández-de-Las-Peñas C (2020) Quadriceps and patellar tendon thickness and stiffness in elite track cyclists: An ultrasonographic and myotonometric evaluation. Front Physiol 11:607208
pubmed: 33381054 pmcid: 7767861 doi: 10.3389/fphys.2020.607208
Klich S, Michalik K, Rajca J, Ficek K, Fernández-de-Las-Peñas C, Kawczynski A, Madeleine P (2023) Fatigue-induced alterations of the patellar tendon in elite sprint track cyclists. Int J Sports Med 44(13):995–1002
pubmed: 36690028 doi: 10.1055/a-2018-2781
Kordi M, Goodall S, Barratt P (2017) Relation between peak power output in sprint cycling and maximum voluntary isometric torque production. J Electromyogr Kinesiol 35:95–99
pubmed: 28624688 doi: 10.1016/j.jelekin.2017.06.003
Kordi M, Fullerton C, Passfield L, Parker Simpson L (2019) Influence of upright versus time trial cycling position on determination of critical power and W’ in trained cyclists. Eur J Sport Sci 19(2):192–198
pubmed: 30009673 doi: 10.1080/17461391.2018.1495768
Kordi M, Folland J, Goodall S (2020) Mechanical and morphological determinants of peak power output in elite cyclists. Scand J Med Sci Sports 30(2):227–237
pubmed: 31598998 doi: 10.1111/sms.13570
Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M (2000) Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol 88(3):811–816
pubmed: 10710372 doi: 10.1152/jappl.2000.88.3.811
Lee H-J, Lee K-W, Takeshi K, Lee Y-W, Kim H-J (2021) Correlation analysis between lower limb muscle architectures and cycling power via ultrasonography. Sci Rep 11(1):1–12
Leong C, McDermott W, Elmer S, Martin J (2014) Chronic eccentric cycling improves quadriceps muscle structure and maximum cycling power. Int J Sports Med 35(07):559–565
pubmed: 24234011
Martin JC, Davidson CJ, Pardyjak ER (2007) Understanding sprint-cycling performance: the integration of muscle power, resistance, and modeling. Int J Sports Physiol Perform 2(1):5–21
pubmed: 19255451 doi: 10.1123/ijspp.2.1.5
Mendez-Villanueva A, Hamer P, Bishop D (2008) Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. Eur J Appl Physiol 103(4):411–419
pubmed: 18368419 doi: 10.1007/s00421-008-0723-9
Obst SJ, Barrett RS, Newsham-West R (2013) Immediate effect of exercise on achilles tendon properties: systematic review. Med Sci Sports Exerc 45(8):1534–1544
pubmed: 23439426 doi: 10.1249/MSS.0b013e318289d821
Paton CD, Hopkins WG, Cook C (2009) Effects of low-vs. high-cadence interval training on cycling performance. J Strength Cond Res 23(6):1758–1763
pubmed: 19675486 doi: 10.1519/JSC.0b013e3181b3f1d3
Paulos LE, Butler DL, Noyes FR, Grood ES (1983) Intra-articular cruciate reconstruction. II: replacement with vascularized patellar tendon. Clin Orthop Relat Res 172:78–84
doi: 10.1097/00003086-198301000-00015
Pruyn EC, Watsford ML, Murphy AJ, Pine MJ, Spurrs RW, Cameron ML et al (2012) Relationship between leg stiffness and lower body injuries in professional Australian football. J Sports Sci 30:71–78
pubmed: 22117105 doi: 10.1080/02640414.2011.624540
Richardson JT (2011) Eta squared and partial eta squared as measures of effect size in educational research. Rev Educ Res 6(2):135–147
doi: 10.1016/j.edurev.2010.12.001
Samozino P, Horvais N, Hintzy F (2007) Why does power output decrease at high pedaling rates during sprint cycling? Med Sci Sports Exerc 39(4):680–687
pubmed: 17414806 doi: 10.1249/MSS.0b013e3180315246
Sarre G, Lepers R (2005) Neuromuscular function during prolonged pedalling exercise at different cadences. Acta Physiol Scand 185(4):321–328
pubmed: 16266373 doi: 10.1111/j.1365-201X.2005.01490.x
Sawilowsky S (2009) New effect size rules of thumb. J Mod Appl Stat Methods 8(2):26
doi: 10.22237/jmasm/1257035100
Secomb JL, Lundgren LE, Farley OR (2015) Relationships between lower-body muscle structure and lower-body strength, power, and muscle–tendon complex stiffness. J Strength Cond Res 29(8):2221–2228
pubmed: 25647652 doi: 10.1519/JSC.0000000000000858
Shalabi A, Kristoffersen-Wiberg M, Aspelin P, Movin T (2004) Immediate Achilles tendon response after strength training evaluated by MRI. Med Sci Sports Exerc 36(11):1841–1846
pubmed: 15514495 doi: 10.1249/01.MSS.0000145450.75035.61
Tardioli A, Malliaras P, Maffulli N (2012) Immediate and short-term effects of exercise on tendon structure: biochemical, biomechanical and imaging responses. Br Med Bull 103(1):169–202
pubmed: 22279080 doi: 10.1093/bmb/ldr052
Taylor-Haas JA, Garcia MC, Rauh MJ (2022) Cadence in youth long-distance runners is predicted by leg length and running speed. Gait Posture 98:266–270
pubmed: 36209689 doi: 10.1016/j.gaitpost.2022.09.085
Wearing SC, Hooper SL, Purdam C, Cook J, Grigg N, Locke S, Smeathers JE (2013) The acute transverse strain response of the patellar tendon to quadriceps exercise. Med Sci Sports Exerc 45(4):772–777. https://doi.org/10.1249/MSS.0b013e318279a81a
doi: 10.1249/MSS.0b013e318279a81a pubmed: 23135371
Wiesinger HP, Kösters A, Müller E, Seynnes OR (2015) Effects of increased loading on in vivo tendon properties: a systematic review. Med Sci Sports Exerc 47(9):1885–1895
pubmed: 25563908 pmcid: 4535734 doi: 10.1249/MSS.0000000000000603

Auteurs

Sebastian Klich (S)

Department of Paralympic Sport, Wrocław University of Health and Sport Sciences, 51-612, Wrocław, Poland. sebastian.klich@awf.wroc.pl.

Kamil Michalik (K)

Department of Human Motor Skills, Wrocław University of Health and Sport Sciences, 51-612, Wroclaw, Poland.

Bogdan Pietraszewski (B)

Department of Biomechanics, Wrocław University of Health and Sport Sciences, 51-612, Wroclaw, Poland.

Ernst A Hansen (EA)

Centre for Health and Rehabilitation, University College Absalon, 4200, Slagelse, Denmark.

Pascal Madeleine (P)

Department of Health Science and Technology, Aalborg University, ExerciseTech, 9260, Gistrup, Denmark.

Adam Kawczyński (A)

Department of Biomechanics and Sport Engineering, Gdansk University of Physical Education and Sport, 80-336, Gdansk, Poland.

Classifications MeSH