Method of smoldering combustion for the treatment of oil sludge-contaminated soil.

Hazardous waste Oil sludge Smoldering combustion Soil remediation

Journal

Waste management (New York, N.Y.)
ISSN: 1879-2456
Titre abrégé: Waste Manag
Pays: United States
ID NLM: 9884362

Informations de publication

Date de publication:
03 Jan 2024
Historique:
received: 04 07 2023
revised: 08 12 2023
accepted: 24 12 2023
medline: 5 1 2024
pubmed: 5 1 2024
entrez: 4 1 2024
Statut: aheadofprint

Résumé

There is an urgent need to globally remediate oil sludge-contaminated soil (OSS). Smoldering combustion is a new low-energy approach for the treatment of organic waste. Therefore, the feasibility of smoldering combustion for the treatment of OSS was investigated in this study using a series of laboratory-scale experiments. The effective remediation of OSS was found to be achievable when the mass ratio of oil sludge in the sample reached 1/12 and above. Experimental results showed that smoldering at peak temperatures above 500 °C was found to completely remove petroleum hydrocarbons from the samples. The mass ratio of oil sludge in the sample had little effect on the distribution of the major elements (Si, Al, and Ca) in the smoldering products, and most of the minerals in the oil sludge adhered to the surface of the soil particles after smoldering. The smoldering heating environment is detrimental to the reusability of the soil, increases soil pH and available phosphorus content, and decreases organic carbon and total nitrogen content. Moreover, the influence of the airflow rate and material height on smoldering characteristics was investigated. Matching the appropriate airflow rate can help maintain optimal smoldering conditions, and smoldering remains stable with increasing material height. The addition of recovered oil to a sample with a low mass ratio of oil sludge can help with smoldering ignition and improve the removal efficiency of petroleum hydrocarbons. This study has confirmed that smoldering can be used to treat OSS within a broad range of oil sludge concentrations without pretreatment.

Identifiants

pubmed: 38176200
pii: S0956-053X(23)00784-5
doi: 10.1016/j.wasman.2023.12.048
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

73-82

Informations de copyright

Copyright © 2023 Elsevier Ltd. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Zongwei Gan (Z)

National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.

Lejun Deng (L)

National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.

Jianyong Wang (J)

Power China SEPCO1 Electric Power Construction Co. Ltd, 7000 Jingshi Road, Jinan 250101, China.

Guanyu Cheng (G)

National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.

Cheng Zhao (C)

National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.

Zhuping Zhang (Z)

National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.

Yuzhong Li (Y)

National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China. Electronic address: lyz@sdu.edu.cn.

Zhanlong Song (Z)

National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.

Classifications MeSH