Estimating the effects of vegetation and increased albedo on the urban heat island effect with spatial causal inference.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
04 Jan 2024
04 Jan 2024
Historique:
received:
01
11
2023
accepted:
28
12
2023
medline:
5
1
2024
pubmed:
5
1
2024
entrez:
4
1
2024
Statut:
epublish
Résumé
The urban heat island effect causes increased heat stress in urban areas. Cool roofs and urban greening have been promoted as mitigation strategies to reduce this effect. However, evaluating their efficacy remains a challenge, as potential temperature reductions depend on local characteristics. Existing methods to characterize their efficacy, such as computational fluid dynamics and urban canopy models, are computationally burdensome and require a high degree of expertise to employ. We propose a data-driven approach to overcome these hurdles, inspired by recent innovations in spatial causal inference. This approach allows for estimates of hypothetical interventions to reduce the urban heat island effect. We demonstrate this approach by modeling evening temperature in Durham, North Carolina, using readily retrieved air temperature, land cover, and satellite data. Hypothetical interventions such as lining streets with trees, cool roofs, and changing parking lots to green space are estimated to decrease evening temperatures by a maximum of 0.7-0.9 [Formula: see text], with reduced effects on temperature as a function of distance from the intervention. Because of the ease of data access, this approach may be applied to other cities in the U.S. to help them come up with city-specific solutions for reducing urban heat stress.
Identifiants
pubmed: 38177220
doi: 10.1038/s41598-023-50981-w
pii: 10.1038/s41598-023-50981-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
540Informations de copyright
© 2024. The Author(s).
Références
Oke, T. R., Mills, G., Christen, A. & Voogt, J. A. Urban Climates (Cambridge University Press, 2017).
doi: 10.1017/9781139016476
Imhoff, M. L., Zhang, P., Wolfe, R. E. & Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 114, 504–513 (2010).
doi: 10.1016/j.rse.2009.10.008
Khatana, S. A. M., Werner, R. M. & Groeneveld, P. W. Association of extreme heat with all-cause mortality in the contiguous US, 2008–2017. JAMA Netw. Open 5, e2212957 (2022).
doi: 10.1001/jamanetworkopen.2022.12957
pubmed: 35587347
pmcid: 9121188
Huang, K. et al. Persistent increases in nighttime heat stress from urban expansion despite heat island mitigation. J. Geophys. Res. Atmos. 126, e2020JD033831 (2021).
doi: 10.1029/2020JD033831
Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change 7, 501–506 (2017).
doi: 10.1038/nclimate3322
Zhang, B., di Xie, G., xi Gao, J. & Yang, Y. The cooling effect of urban green spaces as a contribution to energy-saving and emission-reduction: A case study in Beijing, China. Build. Environ. 76, 37–43 (2014).
doi: 10.1016/j.buildenv.2014.03.003
Stone, B. Jr. et al. Avoided heat-related mortality through climate adaptation strategies in three US cities. PloS ONE 9, e100852 (2014).
doi: 10.1371/journal.pone.0100852
pubmed: 24964213
pmcid: 4071007
Akbari, H. et al. Local climate change and urban heat island mitigation techniques—The state of the art. J. Civ. Eng. Manag. 22, 1–16 (2016).
doi: 10.3846/13923730.2015.1111934
Li, D., Bou-Zeid, E. & Oppenheimer, M. The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environ. Res. Lett. 9, 055002 (2014).
doi: 10.1088/1748-9326/9/5/055002
Rawat, M. & Singh, R. A study on the comparative review of cool roof thermal performance in various regions. Energy Built Environ. 3, 327–347 (2022).
doi: 10.1016/j.enbenv.2021.03.001
Bowler, D. E., Buyung-Ali, L., Knight, T. M. & Pullin, A. S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 97, 147–155 (2010).
doi: 10.1016/j.landurbplan.2010.05.006
Mirzaei, P. A. Recent challenges in modeling of urban heat island. Sustain. Cities Soc. 19, 200–206 (2015).
doi: 10.1016/j.scs.2015.04.001
Adilkhanova, I., Ngarambe, J. & Yun, G. Y. Recent advances in black box and white-box models for urban heat island prediction: Implications of fusing the two methods. Renew. Sustain. Energy Rev. 165, 112520 (2022).
doi: 10.1016/j.rser.2022.112520
Goldblatt, R. et al. Remotely sensed derived land surface temperature (LST) as a proxy for air temperature and thermal comfort at a small geographical scale. Land 10, 410 (2021).
doi: 10.3390/land10040410
Song, Y. & Wu, C. Examining human heat stress with remote sensing technology. GIScience & Remote Sens. 55, 19–37 (2018).
doi: 10.1080/15481603.2017.1354804
Reich, B. J. et al. A review of spatial causal inference methods for environmental and epidemiological applications. Int. Stat. Rev. 89, 605–634 (2021).
doi: 10.1111/insr.12452
pubmed: 37197445
pmcid: 10187770
Holland, P. W. Statistics and causal inference. J. Am. Stat. Assoc. 81, 945–960 (1986).
doi: 10.1080/01621459.1986.10478354
Frangakis, C. E. & Rubin, D. B. Addressing complications of intention-to-treat analysis in the combined presence of all-or-none treatment-noncompliance and subsequent missing outcomes. Biometrika 86, 365–379 (1999).
doi: 10.1093/biomet/86.2.365
Imbens, G. W. & Rubin, D. B. Causal Inference for Statistics, Social, and Biomedical Sciences (Cambridge University Press, 2015).
doi: 10.1017/CBO9781139025751
Wilf, H. S. Generating Functionology (CRC Press, 2005).
doi: 10.1201/b10576
Papadogeorgou, G. & Samanta, S. Spatial causal inference in the presence of unmeasured confounding and interference. Preprint arXiv:2303.08218 (2023).
Williams, C. K. & Rasmussen, C. E. Gaussian Processes for Machine Learning (MIT Press, 2006).
Paciorek, C. J. The importance of scale for spatial-confounding bias and precision of spatial regression estimators. Stat. Sci. Rev. J. Inst. Math. Stat. 25, 107–125 (2010).
Shandas, V., Voelkel, J., Williams, J. & Hoffman, J. Integrating satellite and ground measurements for predicting locations of extreme urban heat. Climate 7, 5 (2019).
doi: 10.3390/cli7010005
North Carolina State Climate Office. Urban Heat Island Temperature Mapping Campaign. https://climate.ncsu.edu/research/uhi/ (2021).
Chandler, T. J. Temperature and humidity traverses across London. Weather 17, 235–242 (1962).
doi: 10.1002/j.1477-8696.1962.tb05125.x
Chun, B. & Guldmann, J. M. Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc. Urban Plan. 125, 76–88 (2014).
doi: 10.1016/j.landurbplan.2014.01.016
Almeida, C. R., Teodoro, A. C. & Gonçalves, A. Study of the Urban Heat Island (UHI) using remote sensing data/techniques: A systematic review. Environments 8, 105 (2021).
doi: 10.3390/environments8100105
Stewart, I. D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. 31, 200–217 (2011).
doi: 10.1002/joc.2141
GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction software Library. https://doi.org/10.5281/zenodo.5884351 (Open Source Geospatial Foundation, 2023).
Dewitz, J. National Land Cover Database (NLCD) 2021 Products. https://doi.org/10.5066/P9JZ7AO3 (2023).
Stewart, I. D. & Oke, T. R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93, 1879–1900 (2012).
doi: 10.1175/BAMS-D-11-00019.1
Bonafoni, S. & Sekertekin, A. Albedo retrieval from Sentinel-2 by new narrow-to-broadband conversion coefficients. IEEE Geosci. Remote Sens. Lett. 17, 1618–1622 (2020).
doi: 10.1109/LGRS.2020.2967085
Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. (2017).
Pretzsch, H. et al. Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban For. Urban Green. 14, 466–479 (2015).
doi: 10.1016/j.ufug.2015.04.006
Doick, K. J., Peace, A. & Hutchings, T. R. The role of one large greenspace in mitigating London’s nocturnal urban heat island. Sci. Total Environ. 493, 662–671 (2014).
doi: 10.1016/j.scitotenv.2014.06.048
pubmed: 24995636
Wang, Y., Li, Y., Sabatino, S. D., Martilli, A. & Chan, P. W. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong. Environ. Res. Lett. 13, 034015 (2018).
doi: 10.1088/1748-9326/aaa848
Ruß, G. & Brenning, A. Data mining in precision agriculture: Management of spatial information. In Computational Intelligence for Knowledge-Based Systems Design: 13th International Conference on Information Processing and Management of Uncertainty, IPMU 2010, Dortmund, Germany, June 28–July 2, 2010. Proceedings 13. 350–359 (Springer, 2010).
Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).
doi: 10.1111/ecog.02881
Jiang, Z., Zheng, T., Liu, Y. & Carlson, D. Incorporating prior knowledge into neural networks through an implicit composite kernel. Preprint arXiv:2205.07384 (2023).
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics (Springer, 2009).