Carnosine regulation of intracellular pH homeostasis promotes lysosome-dependent tumor immunoevasion.


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
04 Jan 2024
Historique:
received: 17 10 2022
accepted: 28 11 2023
medline: 5 1 2024
pubmed: 5 1 2024
entrez: 4 1 2024
Statut: aheadofprint

Résumé

Tumor cells and surrounding immune cells undergo metabolic reprogramming, leading to an acidic tumor microenvironment. However, it is unclear how tumor cells adapt to this acidic stress during tumor progression. Here we show that carnosine, a mobile buffering metabolite that accumulates under hypoxia in tumor cells, regulates intracellular pH homeostasis and drives lysosome-dependent tumor immune evasion. A previously unrecognized isoform of carnosine synthase, CARNS2, promotes carnosine synthesis under hypoxia. Carnosine maintains intracellular pH (pHi) homeostasis by functioning as a mobile proton carrier to accelerate cytosolic H

Identifiants

pubmed: 38177283
doi: 10.1038/s41590-023-01719-3
pii: 10.1038/s41590-023-01719-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 82130087

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863–875 (2017).
pubmed: 28734735 pmcid: 5814137 doi: 10.1016/j.tcb.2017.06.003
Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).
doi: 10.1126/science.1160809
Xu, K. et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science 371, 405–410 (2021).
pubmed: 33479154 pmcid: 8380312 doi: 10.1126/science.abb2683
Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and cancer progression. Science 368, eaaw5473 (2020).
pubmed: 32273439 pmcid: 7227780 doi: 10.1126/science.aaw5473
Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011).
pubmed: 21833026 doi: 10.1038/nrc3110
Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010).
pubmed: 19997129 doi: 10.1038/nrm2820
Parks, S. K., Chiche, J. & Pouyssegur, J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat. Rev. Cancer 13, 611–623 (2013).
pubmed: 23969692 doi: 10.1038/nrc3579
Bertholet, A. M. et al. H
pubmed: 31341297 pmcid: 6662629 doi: 10.1038/s41586-019-1400-3
Liu, B. et al. STAT3 associates with vacuolar H
pubmed: 30127373 pmcid: 6170402 doi: 10.1038/s41422-018-0080-0
Galenkamp, K. M. O. et al. Golgi acidification by NHE7 regulates cytosolic pH homeostasis in pancreatic cancer cells. Cancer Discov. 10, 822–835 (2020).
pubmed: 32200349 pmcid: 7269827 doi: 10.1158/2159-8290.CD-19-1007
Schönichen, A., Webb, B. A., Jacobson, M. P. & Barber, D. L. Considering protonation as a posttranslational modification regulating protein structure and function. Annu. Rev. Biophys. 42, 289–314 (2013).
pubmed: 23451893 pmcid: 4041481 doi: 10.1146/annurev-biophys-050511-102349
Vaughan-Jones, R. D., Peercy, B. E., Keener, J. P. & Spitzer, K. W. Intrinsic H
pubmed: 12015426 pmcid: 2290307 doi: 10.1113/jphysiol.2001.013267
Hwang, J. Y. et al. Dual sensing of physiologic pH and calcium by EFCAB9 regulates sperm motility. Cell 177, 1480–1494 (2019).
pubmed: 31056283 pmcid: 8808721 doi: 10.1016/j.cell.2019.03.047
Oginuma, M. et al. Intracellular pH controls WNT downstream of glycolysis in amniote embryos. Nature 584, 98–101 (2020).
pubmed: 32581357 pmcid: 8278564 doi: 10.1038/s41586-020-2428-0
Reddy, A. et al. pH-Gated succinate secretion regulates muscle remodeling in response to exercise. Cell 183, 62–75 (2020).
pubmed: 32946811 pmcid: 7778787 doi: 10.1016/j.cell.2020.08.039
Walton, Z. E. et al. Acid suspends the circadian clock in hypoxia through inhibition of mTOR. Cell 174, 72–87 (2018).
pubmed: 29861175 pmcid: 6398937 doi: 10.1016/j.cell.2018.05.009
Bohn, T. et al. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat. Immunol. 19, 1319–1329 (2018).
pubmed: 30397348 doi: 10.1038/s41590-018-0226-8
Johnston, R. J. et al. VISTA is an acidic pH-selective ligand for PSGL-1. Nature 574, 565–570 (2019).
pubmed: 31645726 doi: 10.1038/s41586-019-1674-5
Boedtkjer, E. & Pedersen, S. F. The acidic tumor microenvironment as a driver of cancer. Annu. Rev. Physiol. 82, 103–126 (2020).
pubmed: 31730395 doi: 10.1146/annurev-physiol-021119-034627
Corbet, C. & Feron, O. Tumour acidosis: from the passenger to the driver’s seat. Nat. Rev. Cancer 17, 577–593 (2017).
pubmed: 28912578 doi: 10.1038/nrc.2017.77
Savini, M., Zhao, Q. & Wang, M. C. Lysosomes: signaling hubs for metabolic sensing and longevity. Trends cell Biol. 29, 876–887 (2019).
pubmed: 31611045 pmcid: 7135937 doi: 10.1016/j.tcb.2019.08.008
Cui, Y. et al. A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation. Science 365, 53–60 (2019).
pubmed: 31273116 pmcid: 7062386 doi: 10.1126/science.aau9263
Wyant, G. A. et al. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 360, 751–758 (2018).
pubmed: 29700228 pmcid: 6020066 doi: 10.1126/science.aar2663
Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020).
pubmed: 32376951 pmcid: 7296553 doi: 10.1038/s41586-020-2229-5
Liu, X. et al. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature 588, 693–698 (2020).
pubmed: 33177715 pmcid: 7770056 doi: 10.1038/s41586-020-2911-7
Burr, M. L. et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549, 101–105 (2017).
pubmed: 28813417 pmcid: 5706633 doi: 10.1038/nature23643
Wang, H. et al. HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nat. Chem. Biol. 15, 42–50 (2019).
pubmed: 30397328 doi: 10.1038/s41589-018-0161-x
Boldyrev, A. A., Aldini, G. & Derave, W. Physiology and pathophysiology of carnosine. Physiol. Rev. 93, 1803–1845 (2013).
pubmed: 24137022 doi: 10.1152/physrev.00039.2012
Mahootchi, E. et al. GADL1 is a multifunctional decarboxylase with tissue-specific roles in β-alanine and carnosine production. Sci. Adv. 6, eabb3713 (2020).
pubmed: 32733999 pmcid: 7367687 doi: 10.1126/sciadv.abb3713
Sale, C., Saunders, B. & Harris, R. C. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids 39, 321–333 (2010).
pubmed: 20091069 doi: 10.1007/s00726-009-0443-4
Everaert, I., De Naeyer, H., Taes, Y. & Derave, W. Gene expression of carnosine-related enzymes and transporters in skeletal muscle. Eur. J. Appl. Physiol. 113, 1169–1179 (2013).
pubmed: 23124893 doi: 10.1007/s00421-012-2540-4
Wang, N. et al. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates. Cell 184, 370–383 (2021).
pubmed: 33333023 doi: 10.1016/j.cell.2020.11.043
Nakamura, N. et al. Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 509, 240–244 (2014).
pubmed: 24695226 doi: 10.1038/nature13133
Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 10, 623–635 (2009).
pubmed: 19672277 doi: 10.1038/nrm2745
Smith, D. E., Clémençon, B. & Hediger, M. A. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol. Asp. Med. 34, 323–336 (2013).
doi: 10.1016/j.mam.2012.11.003
Derave, W., Everaert, I., Beeckman, S. & Baguet, A. Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Med. 40, 247–263 (2010).
pubmed: 20199122 doi: 10.2165/11530310-000000000-00000
Drozak, J., Veiga-da-Cunha, M., Vertommen, D., Stroobant, V. & Van Schaftingen, E. Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J. Biol. Chem. 285, 9346–9356 (2010).
pubmed: 20097752 pmcid: 2843183 doi: 10.1074/jbc.M109.095505
Shen, S. et al. A miR-130a-YAP positive feedback loop promotes organ size and tumorigenesis. Cell Res. 25, 997–1012 (2015).
pubmed: 26272168 pmcid: 4559818 doi: 10.1038/cr.2015.98
Heuser, J. Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH. J. Cell Biol. 108, 855–864 (1989).
pubmed: 2921284 doi: 10.1083/jcb.108.3.855
Johnson, D. E., Ostrowski, P., Jaumouillé, V. & Grinstein, S. The position of lysosomes within the cell determines their luminal pH. J. Cell Biol. 212, 677–692 (2016).
pubmed: 26975849 pmcid: 4792074 doi: 10.1083/jcb.201507112
Behrends, C., Sowa, M. E., Gygi, S. P. & Harper, J. W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).
pubmed: 20562859 pmcid: 2901998 doi: 10.1038/nature09204
Lamb, C. A., Yoshimori, T. & Tooze, S. A. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759–774 (2013).
pubmed: 24201109 doi: 10.1038/nrm3696
Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495–501 (2014).
pubmed: 24875736 doi: 10.1038/ncb2979
Xia, H., Green, D. R. & Zou, W. Autophagy in tumour immunity and therapy. Nat. Rev. Cancer 21, 281–297 (2021).
pubmed: 33758415 pmcid: 8087647 doi: 10.1038/s41568-021-00344-2
Song, Z., Krishna, S., Thanos, D., Strominger, J. L. & Ono, S. J. A novel cysteine-rich sequence-specific DNA-binding protein interacts with the conserved X-box motif of the human major histocompatibility complex class II genes via a repeated Cys-His domain and functions as a transcriptional repressor. J. Exp. Med. 180, 1763–1774 (1994).
pubmed: 7964459 doi: 10.1084/jem.180.5.1763
Wolf, Y., Anderson, A. C. & Kuchroo, V. K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 20, 173–185 (2020).
pubmed: 31676858 doi: 10.1038/s41577-019-0224-6
Clayton, K. L. et al. T cell Ig and mucin domain-containing protein 3 is recruited to the immune synapse, disrupts stable synapse formation, and associates with receptor phosphatases. J. Immunol. 192, 782–791 (2014).
pubmed: 24337741 doi: 10.4049/jimmunol.1302663
Johmura, Y. et al. Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science 371, 265–270 (2021).
pubmed: 33446552 doi: 10.1126/science.abb5916
Lu, P. et al. L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Res. 23, 635–644 (2013).
pubmed: 23337585 pmcid: 3641589 doi: 10.1038/cr.2013.13
Sale, C. et al. Carnosine: from exercise performance to health. Amino Acids 44, 1477–1491 (2013).
pubmed: 23479117 doi: 10.1007/s00726-013-1476-2
Black, M. I. et al. The effects of β-alanine supplementation on muscle pH and the power-duration relationship during high-intensity exercise. Front. Physiol. 9, 111 (2018).
pubmed: 29515455 pmcid: 5826376 doi: 10.3389/fphys.2018.00111
Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell 159, 738–749 (2014).
pubmed: 25417152 doi: 10.1016/j.cell.2014.10.029
Kobayashi, T. et al. The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. Immunity 41, 375–388 (2014).
pubmed: 25238095 doi: 10.1016/j.immuni.2014.08.011
Deng, J. et al. ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1 mutant lung cancer. Nat. Cancer 2, 503–514 (2021).
pubmed: 34142094 pmcid: 8205437 doi: 10.1038/s43018-021-00208-6
Lawson, K. A. et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature 586, 120–126 (2020).
pubmed: 32968282 pmcid: 9014559 doi: 10.1038/s41586-020-2746-2
Cheung, P. F. et al. Progranulin mediates immune evasion of pancreatic ductal adenocarcinoma through regulation of MHCI expression. Nat. Commun. 13, 156 (2022).
pubmed: 35013174 pmcid: 8748938 doi: 10.1038/s41467-021-27088-9
Noman, M. Z. et al. Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti-PD-1/PD-L1 immunotherapy. Sci. Adv. 6, eaax7881 (2020).
pubmed: 32494661 pmcid: 7190323 doi: 10.1126/sciadv.aax7881
Gupta, S. et al. Lysosomal retargeting of Myoferlin mitigates membrane stress to enable pancreatic cancer growth. Nat. Cell Biol. 23, 232–242 (2021).
pubmed: 33686253 pmcid: 9446896 doi: 10.1038/s41556-021-00644-7
Perera, R. M. et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524, 361–365 (2015).
pubmed: 26168401 pmcid: 5086585 doi: 10.1038/nature14587
Wang, Y. et al. CLN7 is an organellar chloride channel regulating lysosomal function. Sci. Adv. 7, eabj9608 (2021).
pubmed: 34910516 pmcid: 8673761 doi: 10.1126/sciadv.abj9608
Swietach, P. et al. Hydrogen ion dynamics in human red blood cells. J. Physiol. 588, 4995–5014 (2010).
pubmed: 20962000 pmcid: 3036193 doi: 10.1113/jphysiol.2010.197392
Long, C. P. & Antoniewicz, M. R. High-resolution (13)C metabolic flux analysis. Nat. Protoc. 14, 2856–2877 (2019).
pubmed: 31471597 doi: 10.1038/s41596-019-0204-0
Wiśniewski, J. R., Vildhede, A., Norén, A. & Artursson, P. In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes. J. Proteom. 136, 234–247 (2016).
doi: 10.1016/j.jprot.2016.01.016
Wang, T. et al. Secreted protease PRSS35 suppresses hepatocellular carcinoma by disabling CXCL2-mediated neutrophil extracellular traps. Nat. Commun. 14, 1513 (2023).
pubmed: 36934105 pmcid: 10024721 doi: 10.1038/s41467-023-37227-z
Hu, M. et al. Parkinson’s disease-risk protein TMEM175 is a proton-activated proton channel in lysosomes. Cell 185, 2292–2308 (2022).
pubmed: 35750034 pmcid: 9236176 doi: 10.1016/j.cell.2022.05.021
Li, J. et al. Co-inhibitory molecule B7 superfamily member 1 expressed by tumor-infiltrating myeloid cells induces dysfunction of anti-tumor CD8
pubmed: 29625896 doi: 10.1016/j.immuni.2018.03.018
Zhang, T. et al. ENO1 suppresses cancer cell ferroptosis by degrading the mRNA of iron regulatory protein 1. Nat. Cancer 3, 75–89 (2022).
pubmed: 35121990 doi: 10.1038/s43018-021-00299-1
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319 doi: 10.1093/nar/gkab1038

Auteurs

Ronghui Yan (R)

Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.

Pinggen Zhang (P)

Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
Anhui Province Key Laboratory of Biomedical Aging Research, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.

Shengqi Shen (S)

Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.

Yu Zeng (Y)

The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.

Ting Wang (T)

Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.

Zhaolin Chen (Z)

Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.

Wenhao Ma (W)

Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.

Junru Feng (J)

Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.

Caixia Suo (C)

Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.

Tong Zhang (T)

Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.

Haoran Wei (H)

Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.

Zetan Jiang (Z)

Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.

Rui Chen (R)

Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.

Shi-Ting Li (ST)

Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.

Xiuying Zhong (X)

Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.

Weidong Jia (W)

Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.

Linchong Sun (L)

Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.

Chunlei Cang (C)

The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.

Huafeng Zhang (H)

Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China. hzhang22@ustc.edu.cn.
The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China. hzhang22@ustc.edu.cn.
Anhui Province Key Laboratory of Biomedical Aging Research, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China. hzhang22@ustc.edu.cn.
Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China. hzhang22@ustc.edu.cn.

Ping Gao (P)

Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China. pgao2@ustc.edu.cn.

Classifications MeSH