Carnosine regulation of intracellular pH homeostasis promotes lysosome-dependent tumor immunoevasion.
Journal
Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354
Informations de publication
Date de publication:
04 Jan 2024
04 Jan 2024
Historique:
received:
17
10
2022
accepted:
28
11
2023
medline:
5
1
2024
pubmed:
5
1
2024
entrez:
4
1
2024
Statut:
aheadofprint
Résumé
Tumor cells and surrounding immune cells undergo metabolic reprogramming, leading to an acidic tumor microenvironment. However, it is unclear how tumor cells adapt to this acidic stress during tumor progression. Here we show that carnosine, a mobile buffering metabolite that accumulates under hypoxia in tumor cells, regulates intracellular pH homeostasis and drives lysosome-dependent tumor immune evasion. A previously unrecognized isoform of carnosine synthase, CARNS2, promotes carnosine synthesis under hypoxia. Carnosine maintains intracellular pH (pHi) homeostasis by functioning as a mobile proton carrier to accelerate cytosolic H
Identifiants
pubmed: 38177283
doi: 10.1038/s41590-023-01719-3
pii: 10.1038/s41590-023-01719-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 82130087
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863–875 (2017).
pubmed: 28734735
pmcid: 5814137
doi: 10.1016/j.tcb.2017.06.003
Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).
doi: 10.1126/science.1160809
Xu, K. et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science 371, 405–410 (2021).
pubmed: 33479154
pmcid: 8380312
doi: 10.1126/science.abb2683
Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and cancer progression. Science 368, eaaw5473 (2020).
pubmed: 32273439
pmcid: 7227780
doi: 10.1126/science.aaw5473
Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011).
pubmed: 21833026
doi: 10.1038/nrc3110
Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010).
pubmed: 19997129
doi: 10.1038/nrm2820
Parks, S. K., Chiche, J. & Pouyssegur, J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat. Rev. Cancer 13, 611–623 (2013).
pubmed: 23969692
doi: 10.1038/nrc3579
Bertholet, A. M. et al. H
pubmed: 31341297
pmcid: 6662629
doi: 10.1038/s41586-019-1400-3
Liu, B. et al. STAT3 associates with vacuolar H
pubmed: 30127373
pmcid: 6170402
doi: 10.1038/s41422-018-0080-0
Galenkamp, K. M. O. et al. Golgi acidification by NHE7 regulates cytosolic pH homeostasis in pancreatic cancer cells. Cancer Discov. 10, 822–835 (2020).
pubmed: 32200349
pmcid: 7269827
doi: 10.1158/2159-8290.CD-19-1007
Schönichen, A., Webb, B. A., Jacobson, M. P. & Barber, D. L. Considering protonation as a posttranslational modification regulating protein structure and function. Annu. Rev. Biophys. 42, 289–314 (2013).
pubmed: 23451893
pmcid: 4041481
doi: 10.1146/annurev-biophys-050511-102349
Vaughan-Jones, R. D., Peercy, B. E., Keener, J. P. & Spitzer, K. W. Intrinsic H
pubmed: 12015426
pmcid: 2290307
doi: 10.1113/jphysiol.2001.013267
Hwang, J. Y. et al. Dual sensing of physiologic pH and calcium by EFCAB9 regulates sperm motility. Cell 177, 1480–1494 (2019).
pubmed: 31056283
pmcid: 8808721
doi: 10.1016/j.cell.2019.03.047
Oginuma, M. et al. Intracellular pH controls WNT downstream of glycolysis in amniote embryos. Nature 584, 98–101 (2020).
pubmed: 32581357
pmcid: 8278564
doi: 10.1038/s41586-020-2428-0
Reddy, A. et al. pH-Gated succinate secretion regulates muscle remodeling in response to exercise. Cell 183, 62–75 (2020).
pubmed: 32946811
pmcid: 7778787
doi: 10.1016/j.cell.2020.08.039
Walton, Z. E. et al. Acid suspends the circadian clock in hypoxia through inhibition of mTOR. Cell 174, 72–87 (2018).
pubmed: 29861175
pmcid: 6398937
doi: 10.1016/j.cell.2018.05.009
Bohn, T. et al. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat. Immunol. 19, 1319–1329 (2018).
pubmed: 30397348
doi: 10.1038/s41590-018-0226-8
Johnston, R. J. et al. VISTA is an acidic pH-selective ligand for PSGL-1. Nature 574, 565–570 (2019).
pubmed: 31645726
doi: 10.1038/s41586-019-1674-5
Boedtkjer, E. & Pedersen, S. F. The acidic tumor microenvironment as a driver of cancer. Annu. Rev. Physiol. 82, 103–126 (2020).
pubmed: 31730395
doi: 10.1146/annurev-physiol-021119-034627
Corbet, C. & Feron, O. Tumour acidosis: from the passenger to the driver’s seat. Nat. Rev. Cancer 17, 577–593 (2017).
pubmed: 28912578
doi: 10.1038/nrc.2017.77
Savini, M., Zhao, Q. & Wang, M. C. Lysosomes: signaling hubs for metabolic sensing and longevity. Trends cell Biol. 29, 876–887 (2019).
pubmed: 31611045
pmcid: 7135937
doi: 10.1016/j.tcb.2019.08.008
Cui, Y. et al. A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation. Science 365, 53–60 (2019).
pubmed: 31273116
pmcid: 7062386
doi: 10.1126/science.aau9263
Wyant, G. A. et al. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 360, 751–758 (2018).
pubmed: 29700228
pmcid: 6020066
doi: 10.1126/science.aar2663
Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020).
pubmed: 32376951
pmcid: 7296553
doi: 10.1038/s41586-020-2229-5
Liu, X. et al. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature 588, 693–698 (2020).
pubmed: 33177715
pmcid: 7770056
doi: 10.1038/s41586-020-2911-7
Burr, M. L. et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549, 101–105 (2017).
pubmed: 28813417
pmcid: 5706633
doi: 10.1038/nature23643
Wang, H. et al. HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nat. Chem. Biol. 15, 42–50 (2019).
pubmed: 30397328
doi: 10.1038/s41589-018-0161-x
Boldyrev, A. A., Aldini, G. & Derave, W. Physiology and pathophysiology of carnosine. Physiol. Rev. 93, 1803–1845 (2013).
pubmed: 24137022
doi: 10.1152/physrev.00039.2012
Mahootchi, E. et al. GADL1 is a multifunctional decarboxylase with tissue-specific roles in β-alanine and carnosine production. Sci. Adv. 6, eabb3713 (2020).
pubmed: 32733999
pmcid: 7367687
doi: 10.1126/sciadv.abb3713
Sale, C., Saunders, B. & Harris, R. C. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids 39, 321–333 (2010).
pubmed: 20091069
doi: 10.1007/s00726-009-0443-4
Everaert, I., De Naeyer, H., Taes, Y. & Derave, W. Gene expression of carnosine-related enzymes and transporters in skeletal muscle. Eur. J. Appl. Physiol. 113, 1169–1179 (2013).
pubmed: 23124893
doi: 10.1007/s00421-012-2540-4
Wang, N. et al. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates. Cell 184, 370–383 (2021).
pubmed: 33333023
doi: 10.1016/j.cell.2020.11.043
Nakamura, N. et al. Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 509, 240–244 (2014).
pubmed: 24695226
doi: 10.1038/nature13133
Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 10, 623–635 (2009).
pubmed: 19672277
doi: 10.1038/nrm2745
Smith, D. E., Clémençon, B. & Hediger, M. A. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol. Asp. Med. 34, 323–336 (2013).
doi: 10.1016/j.mam.2012.11.003
Derave, W., Everaert, I., Beeckman, S. & Baguet, A. Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Med. 40, 247–263 (2010).
pubmed: 20199122
doi: 10.2165/11530310-000000000-00000
Drozak, J., Veiga-da-Cunha, M., Vertommen, D., Stroobant, V. & Van Schaftingen, E. Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J. Biol. Chem. 285, 9346–9356 (2010).
pubmed: 20097752
pmcid: 2843183
doi: 10.1074/jbc.M109.095505
Shen, S. et al. A miR-130a-YAP positive feedback loop promotes organ size and tumorigenesis. Cell Res. 25, 997–1012 (2015).
pubmed: 26272168
pmcid: 4559818
doi: 10.1038/cr.2015.98
Heuser, J. Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH. J. Cell Biol. 108, 855–864 (1989).
pubmed: 2921284
doi: 10.1083/jcb.108.3.855
Johnson, D. E., Ostrowski, P., Jaumouillé, V. & Grinstein, S. The position of lysosomes within the cell determines their luminal pH. J. Cell Biol. 212, 677–692 (2016).
pubmed: 26975849
pmcid: 4792074
doi: 10.1083/jcb.201507112
Behrends, C., Sowa, M. E., Gygi, S. P. & Harper, J. W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).
pubmed: 20562859
pmcid: 2901998
doi: 10.1038/nature09204
Lamb, C. A., Yoshimori, T. & Tooze, S. A. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759–774 (2013).
pubmed: 24201109
doi: 10.1038/nrm3696
Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495–501 (2014).
pubmed: 24875736
doi: 10.1038/ncb2979
Xia, H., Green, D. R. & Zou, W. Autophagy in tumour immunity and therapy. Nat. Rev. Cancer 21, 281–297 (2021).
pubmed: 33758415
pmcid: 8087647
doi: 10.1038/s41568-021-00344-2
Song, Z., Krishna, S., Thanos, D., Strominger, J. L. & Ono, S. J. A novel cysteine-rich sequence-specific DNA-binding protein interacts with the conserved X-box motif of the human major histocompatibility complex class II genes via a repeated Cys-His domain and functions as a transcriptional repressor. J. Exp. Med. 180, 1763–1774 (1994).
pubmed: 7964459
doi: 10.1084/jem.180.5.1763
Wolf, Y., Anderson, A. C. & Kuchroo, V. K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 20, 173–185 (2020).
pubmed: 31676858
doi: 10.1038/s41577-019-0224-6
Clayton, K. L. et al. T cell Ig and mucin domain-containing protein 3 is recruited to the immune synapse, disrupts stable synapse formation, and associates with receptor phosphatases. J. Immunol. 192, 782–791 (2014).
pubmed: 24337741
doi: 10.4049/jimmunol.1302663
Johmura, Y. et al. Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science 371, 265–270 (2021).
pubmed: 33446552
doi: 10.1126/science.abb5916
Lu, P. et al. L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Res. 23, 635–644 (2013).
pubmed: 23337585
pmcid: 3641589
doi: 10.1038/cr.2013.13
Sale, C. et al. Carnosine: from exercise performance to health. Amino Acids 44, 1477–1491 (2013).
pubmed: 23479117
doi: 10.1007/s00726-013-1476-2
Black, M. I. et al. The effects of β-alanine supplementation on muscle pH and the power-duration relationship during high-intensity exercise. Front. Physiol. 9, 111 (2018).
pubmed: 29515455
pmcid: 5826376
doi: 10.3389/fphys.2018.00111
Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell 159, 738–749 (2014).
pubmed: 25417152
doi: 10.1016/j.cell.2014.10.029
Kobayashi, T. et al. The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. Immunity 41, 375–388 (2014).
pubmed: 25238095
doi: 10.1016/j.immuni.2014.08.011
Deng, J. et al. ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1 mutant lung cancer. Nat. Cancer 2, 503–514 (2021).
pubmed: 34142094
pmcid: 8205437
doi: 10.1038/s43018-021-00208-6
Lawson, K. A. et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature 586, 120–126 (2020).
pubmed: 32968282
pmcid: 9014559
doi: 10.1038/s41586-020-2746-2
Cheung, P. F. et al. Progranulin mediates immune evasion of pancreatic ductal adenocarcinoma through regulation of MHCI expression. Nat. Commun. 13, 156 (2022).
pubmed: 35013174
pmcid: 8748938
doi: 10.1038/s41467-021-27088-9
Noman, M. Z. et al. Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti-PD-1/PD-L1 immunotherapy. Sci. Adv. 6, eaax7881 (2020).
pubmed: 32494661
pmcid: 7190323
doi: 10.1126/sciadv.aax7881
Gupta, S. et al. Lysosomal retargeting of Myoferlin mitigates membrane stress to enable pancreatic cancer growth. Nat. Cell Biol. 23, 232–242 (2021).
pubmed: 33686253
pmcid: 9446896
doi: 10.1038/s41556-021-00644-7
Perera, R. M. et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524, 361–365 (2015).
pubmed: 26168401
pmcid: 5086585
doi: 10.1038/nature14587
Wang, Y. et al. CLN7 is an organellar chloride channel regulating lysosomal function. Sci. Adv. 7, eabj9608 (2021).
pubmed: 34910516
pmcid: 8673761
doi: 10.1126/sciadv.abj9608
Swietach, P. et al. Hydrogen ion dynamics in human red blood cells. J. Physiol. 588, 4995–5014 (2010).
pubmed: 20962000
pmcid: 3036193
doi: 10.1113/jphysiol.2010.197392
Long, C. P. & Antoniewicz, M. R. High-resolution (13)C metabolic flux analysis. Nat. Protoc. 14, 2856–2877 (2019).
pubmed: 31471597
doi: 10.1038/s41596-019-0204-0
Wiśniewski, J. R., Vildhede, A., Norén, A. & Artursson, P. In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes. J. Proteom. 136, 234–247 (2016).
doi: 10.1016/j.jprot.2016.01.016
Wang, T. et al. Secreted protease PRSS35 suppresses hepatocellular carcinoma by disabling CXCL2-mediated neutrophil extracellular traps. Nat. Commun. 14, 1513 (2023).
pubmed: 36934105
pmcid: 10024721
doi: 10.1038/s41467-023-37227-z
Hu, M. et al. Parkinson’s disease-risk protein TMEM175 is a proton-activated proton channel in lysosomes. Cell 185, 2292–2308 (2022).
pubmed: 35750034
pmcid: 9236176
doi: 10.1016/j.cell.2022.05.021
Li, J. et al. Co-inhibitory molecule B7 superfamily member 1 expressed by tumor-infiltrating myeloid cells induces dysfunction of anti-tumor CD8
pubmed: 29625896
doi: 10.1016/j.immuni.2018.03.018
Zhang, T. et al. ENO1 suppresses cancer cell ferroptosis by degrading the mRNA of iron regulatory protein 1. Nat. Cancer 3, 75–89 (2022).
pubmed: 35121990
doi: 10.1038/s43018-021-00299-1
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319
doi: 10.1093/nar/gkab1038