First- and second-generation integrated process for bioethanol production: Fermentation of molasses diluted with hemicellulose hydrolysate by recombinant Saccharomyces cerevisiae.
co-fermentation
hemicellulosic hydrolysate
molasses
propagation
recombinant yeast
Journal
Biotechnology and bioengineering
ISSN: 1097-0290
Titre abrégé: Biotechnol Bioeng
Pays: United States
ID NLM: 7502021
Informations de publication
Date de publication:
04 Jan 2024
04 Jan 2024
Historique:
revised:
11
12
2023
received:
02
09
2023
accepted:
19
12
2023
medline:
5
1
2024
pubmed:
5
1
2024
entrez:
5
1
2024
Statut:
aheadofprint
Résumé
The integration of first- (1G) and second-generation (2G) ethanol production by adding sugarcane juice or molasses to lignocellulosic hydrolysates offers the possibility to overcome the problem of inhibitors (acetic acid, furfural, hydroxymethylfurfural and phenolic compounds), and add nutrients (such as salts, sugars and nitrogen sources) to the fermentation medium, allowing the production of higher ethanol titers. In this work, an 1G2G production process was developed with hemicellulosic hydrolysate (HH) from a diluted sulfuric acid pretreatment of sugarcane bagasse and sugarcane molasses. The industrial Saccharomyces cerevisiae CAT-1 was genetically modified for xylose consumption and used for co-fermentation of sucrose, fructose, glucose, and xylose. The fed-batch fermentation with high cell density that mimics an industrial fermentation was performed at bench scale fermenter, achieved high volumetric ethanol productivity of 1.59 g L
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Brazilian Council for Scientific and Technological Development - CNPq
ID : 490029/2009-4
Organisme : Brazilian Council for Scientific and Technological Development - CNPq
ID : 308627/2015-6
Organisme : Brazilian Council for Scientific and Technological Development - CNPq
ID : 420480/2018-8
Organisme : Brazilian Council for Scientific and Technological Development - CNPq
ID : 304944/2018-1, 308389/2019-0
Organisme : Financier of Studies and Projects - FINEP
ID : 01.09.0566.00/1421-08
Organisme : Coordination for the Improvement of Higher Education Personnel - CAPES
ID : 88882.345324/2019-01
Organisme : Coordination for the Improvement of Higher Education Personnel - CAPES
ID : 88882.43293/2019-01
Organisme : Japanese International Cooperation Agency (JICA)
Organisme : CNPq
ID : 406564/2022-1
Informations de copyright
© 2024 Wiley Periodicals LLC.
Références
Almeida, E. L. M., e Silva, G. M., Vassalli, I. A., Silva, M. S., Santana, W. C., Silva, P. H. A., & Eller, M. R. (2020). Effects of nitrogen supplementation on Saccharomyces cerevisiae JP14 fermentation for mead production. Food Science and Technology, 40, 336-343.
Babrzadeh, F., Jalili, R., Wang, C., Shokralla, S., Pierce, S., Robinson-Mosher, A., Nyren, P., Shafer, R. W., Basso, L. C., de Amorim, H. v, de Oliveira, A. J., Davis, R. W., Ronaghi, M., Gharizadeh, B., & Stambuk, B. U. (2012). Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1. Molecular Genetics and Genomics, 287, 485-494.
Basso, L. C., de Amorim, H. V., de Oliveira, A. J., & Lopes, M. L. (2008). Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Research, 8, 1155-1163.
Biazi, L. E., Martínez-Jimenez, F. D., Bonan, C. I. D. G., Soares, L. B., Morais, E. R., Ienczak, J. L., & Costa, A. C. (2020). A differential evolution approach to estimate parameters in a temperature-dependent kinetic model for second generation ethanol production under high cell density with Spathaspora passalidarum. Biochemical Engineering Journal, 161, 107586.
Bonan, C. I. D. G., Tramontina, R., dos Santos, M. W., Biazi, L. E., Soares, L. B., Pereira, I. O., Hoffmam, Z. B., Coutouné, N., Squina, F. M., Robl, D., & Ienczak, J. L. (2021). Biorefinery platform for Spathaspora passalidarum NRRL Y-27907 in the production of ethanol, xylitol, and single cell protein from sugarcane bagasse. Bioenergy Research, 15, 1169-1181.
Bonatelli, M. L., Ienczak, J. L., & Labate, C. A. (2019). Sugarcane must fed-batch fermentation by Saccharomyces cerevisiae: Impact of sterilized and non-sterilized sugarcane must. Antonie Van Leeuwenhoek, 112, 1177-1187.
Ceccato-Antonini, S. R., Tosta, C. D., & Silva, A. C. (2004). Determination of yeast killer activity in fermenting sugarcane juice using selected ethanol-making strains. Brazilian Archives of Biology and Technology, 47, 13-23.
Cheng, K.-K., Wu, J., Lin, Z.-N., & Zhang, J.-A. (2014). Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob. Biotechnology for Biofuels, 7, 166.
Conab, C. N. deA. (2022). Boletim da safra de cana-de-açúcar: Levantamento - Safra 2022/23. Safra brasileira de cana de açúcar, 2022. https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar
Cunha, J. T., Soares, P. O., Baptista, S. L., Costa, C. E., & Domingues, L. (2020). Engineered Saccharomyces cerevisiae for lignocellulosic valorization: A review and perspectives on bioethanol production. Bioengineered, 11, 883-903.
de Oliveira, R. A., Vaz Rossell, C. E., Venus, J., Rabelo, S. C., & Filho, R. M. (2018). Detoxification of sugarcane-derived hemicellulosic hydrolysate using a lactic acid producing strain. Journal of Biotechnology, 278, 56-63.
van Dijk, M., Mierke, F., Nygård, Y., & Olsson, L. (2020). Nutrient-supplemented propagation of Saccharomyces cerevisiae improves its lignocellulose fermentation ability. AMB Express, 10, 157.
Dionísio, S. R., Santoro, D. C. J., Bonan, C. I. D. G., Soares, L. B., Biazi, L. E., Rabelo, S. C., & Ienczak, J. L. (2021). Second-generation ethanol process for integral use of hemicellulosic and cellulosic hydrolysates from diluted sulfuric acid pretreatment of sugarcane bagasse. Fuel, 304, 121290.
Farias, D., & Maugeri-Filho, F. (2021). Sequential fed batch extractive fermentation for enhanced bioethanol production using recycled Spathaspora passalidarum and mixed sugar composition. Fuel, 288, 119673.
Farias, D., & Filho, F. M. (2019). Co-culture strategy for improved 2G bioethanol production using a mixture of sugarcane molasses and bagasse hydrolysate as substrate. Biochemical Engineering Journal, 147, 29-38.
Freitas, C., Neves, E., Reis, A., Passarinho, P. C., & da Silva, T. L. (2013). Use of multi-parameter flow cytometry as tool to monitor the impact of formic acid on Saccharomyces carlsbergensis batch ethanol fermentations. Applied Biochemistry and Biotechnology, 169, 2038-2048.
Godoy, A., Amorim, H. V., Lopes, M. L., & Oliveira, A. J. (2008). Continuous and batch fermentation processes: Advantages and disadvantages of these processes in the Brazilian ethanol production. International Sugar Journal, 110, 175-181.
Hernández-Pérez, A. F., Chaves-Villamil, A. C., de Arruda, P. V., dos Santos, J. C., & Felipe, M. G. A. (2020). Sugarcane syrup improves xylitol bioproduction from sugarcane bagasse and straw hemicellulosic hydrolysate. Waste and Biomass Valorization, 11, 4215-4224.
Ilanidis, D., Stagge, S., Jönsson, L. J., & Martín, C. (2021). Hydrothermal pretreatment of wheat straw: Effects of temperature and acidity on byproduct formation and inhibition of enzymatic hydrolysis and ethanolic fermentation. Agronomy, 11, 487.
Jeffries, T. W. (2006). Engineering yeasts for xylose metabolism. Current Opinion in Biotechnology, 17, 320-326.
Karhumaa, K., Sanchez, R. G., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2007). Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microbial Cell Factories, 6, 5.
Klein, B. C., Silva, J. F. L., Junqueira, T. L., Rabelo, S. C., Arruda, P. v, Ienczak, J. L., Mantelatto, P. E., Pradella, J. G. C., Junior, S. V., & Bonomi, A. (2017). Process development and techno-economic analysis of bio-based succinic acid derived from pentoses integrated to a sugarcane biorefinery. Biofuels, Bioproducts and Biorefining, 11, 1051-1064.
Li, Z., Wang, D., & Shi, Y.-C. (2017). Effects of nitrogen source on ethanol production in very high gravity fermentation of corn starch. Journal of the Taiwan Institute of Chemical Engineers, 70, 229-235.
Lima, C. S., Neitzel, T., de Oliveira Pereira, I., Rabelo, S. C., Ienczak, J. L., Roberto, I. C., & Rocha, G. J. M. (2021). Effect of the sugarcane bagasse deacetylation in the pentoses fermentation. BioEnergy Research, 14, 1171-1183.
Lopes, M. L., Paulillo, S. C. L., Godoy, A., Cherubin, R. A., Lorenzi, M. S., Giometti, F. H. C., Bernardino, C. D., Amorim Neto, H. B., & Amorim, H. V. (2016). Ethanol production in Brazil: A bridge between science and industry. Brazilian Journal of Microbiology, 47, 64-76.
Martins, L. H. S., Rabelo, S. C., & Costa, A. C. (2015). Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse. Bioresource Technology, 191, 312-321.
Marton, J. M., Felipe, M. G. A., e Silva, J. B. A., & Júnior, A. P. (2006). Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production. Brazilian Journal of Chemical Engineering, 23, 9-21.
Milanez, A. Y., Nyko, D., Valente, M. S., De Sousa, L. C., Charles, A. B., De Jesus, D. F., Djun, M., Watanabe, B., Ferreira, M., Mylene, C., Alves, C., Rezende, F., Cavalett, O., Lopes, T., Vera, J., & De Gouvêia, L. R. (2015). De promessa a realidade: Como o etanol celulósico pode revolucionar a indústria da cana-de-açúcar-uma avaliação do potencial competitivo e sugestões de política pública. BNDES Setorial, 41, 237-294.
Milessi, T. S., Silva, C. R., Moraes, G. S., Aquino, P. M., Giordano, R. C., Giordano, R. L. C., & Zangirolami, T. C. (2020). Continuous 2G ethanol production from xylose in a fixed-bed reactor by native Saccharomyces cerevisiae strain through simultaneous isomerization and fermentation. Cellulose, 27, 4429-4442.
Milessi, T. S., Zangirolami, T. C., Perez, C. L., Sandri, J. P., Corradini, F. A. S., Foulquié-Moreno, M. R., Thevelein, J. M., Giordano, R. C., & Giordano, R. L. C. (2020). Bioethanol production from xylose-rich hydrolysate by immobilized recombinant Saccharomyces cerevisiae in fixed-bed reactor. Industrial Biotechnology, 16, 75-80.
Nakanishi, S. C., Soares, L. B., Biazi, L. E., Nascimento, V. M., Costa, A. C., Rocha, G. J. M., & Ienczak, J. L. (2017). Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and Scheffersomyces stipitis. Biotechnology and Bioengineering, 114, 2211-2221.
Neitzel, T., Lima, C. S., Biazi, L. E., Collograi, K. C., da Costa, A. C., dos Santos, L. V., & Ienczak, J. L. (2020). Impact of the Melle-Boinot process on the enhancement of second-generation ethanol production by Spathaspora passalidarum. Renewable Energy, 160, 1206-1216.
Novy, V., Wang, R., Westman, J. O., Franzén, C. J., & Nidetzky, B. (2017). Saccharomyces cerevisiae strain comparison in glucose-xylose fermentations on defined substrates and in high-gravity SSCF: Convergence in strain performance despite differences in genetic and evolutionary engineering history. Biotechnology for Biofuels, 10, 205.
Ochoa, S. (2019). Fed-batch fermentation - design strategies. Comprehensive Biotechnology, 2, 586-600.
Pereira, I. D. O., dos Santos, Â. A., Gonçalves, D. L., Purificação, M., Guimarães, N. C., Tramontina, R., Coutouné, N., Zanella, E., Matsushika, A., Stambuk, B. U., & Ienczak, J. L. (2021). Comparison of Spathaspora passalidarum and recombinant Saccharomyces cerevisiae for integration of first-and second-generation ethanol production. FEMS Yeast Research, 21, foab048.
Perez, C. L., Pereira, L. P. R. C., Milessi, T. S., Sandri, J. P., Demeke, M., Foulquié-Moreno, M. R., Thevelein, J. M., & Zangirolami, T. C. (2022). Towards a practical industrial 2G ethanol production process based on immobilized recombinant S. cerevisiae: Medium and strain selection for robust integrated fixed-bed reactor operation. Renewable Energy, 185, 363-375.
Rabelo, S. C., Maciel Filho, R., & Costa, A. C. (2013). Lime pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse. Applied Biochemistry and Biotechnology, 169, 1696-1712.
Rocha, G. J. M., Nascimento, V. M., Gonçalves, A. R., Silva, V. F. N., & Martín, C. (2015). Influence of mixed sugarcane bagasse samples evaluated by elemental and physical-chemical composition. Industrial Crops and Products, 64, 52-58.
Roque, L. R., Morgado, G. P., Nascimento, V. M., Ienczak, J. L., & Rabelo, S. C. (2019). Liquid-liquid extraction: A promising alternative for inhibitors removing of pentoses fermentation. Fuel, 242, 775-787.
Santos, S. C., de Sousa, A. S., Dionísio, S. R., Tramontina, R., Ruller, R., Squina, F. M., Vaz Rossell, C. E., da Costa, A. C., & Ienczak, J. L. (2016). Bioethanol production by recycled Scheffersomyces stipitis in sequential batch fermentations with high cell density using xylose and glucose mixture. Bioresource Technology, 219, 319-329.
Shen, Y., Guo, J.-S., Chen, Y.-P., Zhang, H.-D., Zheng, X.-X., Zhang, X.-M., & Bai, F.-W. (2012). Application of low-cost algal nitrogen source feeding in fuel ethanol production using high gravity sweet potato medium. Journal of Biotechnology, 160, 229-235.
Sluiter, J. B., Chum, H., Gomes, A. C., Tavares, R. P. A., Azevedo, V., Pimenta, M. T. B., Rabelo, S. C., Marabezi, K., Curvelo, A. A. S., Alves, A. R., Garcia, W. T., Carvalho, W., Esteves, P. J., Mendonça, S., Oliveira, P. A., Ribeiro, J. A. A., Mendes, T. D., Vicentin, M. P., Duarte, C. L., & Mori, M. N. (2016). Evaluation of Brazilian sugarcane bagasse characterization: An interlaboratory comparison study. Journal of AOAC International, 99, 579-585.
Smith, J. M., Van Ness, H. C., & Abbott, M. M. (2005). Introduction to chemical engineering thermodynamics. 7th International edition, McGraw-Hill chemical engineering series. McGraw-Hill.
Soares, L. B., Bonan, C. I. D. G., Biazi, L. E., Dionísio, S. R., Bonatelli, M. L., Andrade, A. L. D., Renzano, E. C., Costa, A. C., & Ienczak, JL. (2020). Investigation of hemicellulosic hydrolysate inhibitor resistance and fermentation strategies to overcome inhibition in non-saccharomyces species. Biomass & Bioenergy, 137, 105549.
Soares, L. B., da Silveira, J. M., Biazi, L. E., Longo, L., de Oliveira, D., Furigo Júnior, A., & Ienczak, J. L. (2022). An overview on fermentation strategies to overcome lignocellulosic inhibitors in second-generation ethanol production using cell immobilization. Critical Reviews in Biotechnology, 43(8), 1150-1171.
Souza, F. R. R., Dutra, E. D., Leite, F. C. B., Cadete, R. M., Rosa, C. A., Stambuk, B. U., Stamford, T. L. M., & de Morais, M. A. (2018). Production of ethanol fuel from enzyme-treated sugarcane bagasse hydrolysate using d-xylose-fermenting wild yeast isolated from Brazilian biomes. 3 Biotech, 8(7), 312.
Vieira, S., Barros, M. V., Sydney, A. C. N., Piekarski, C. M., de Francisco, A. C., Vandenberghe, L. P. S., & Sydney, E. B. (2020). Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. Bioresource Technology, 299, 122635.
Vitolo, M., Duranti, I., & Pellegrim, M. B. (1995). Effect of pH, aeration and sucrose feeding on the invertase activity of intact S. cerevisiae cells grown in sugarcane blackstrap molasses. Journal of Industrial Microbiology, 15(2), 75-79. https://academic.oup.com/jimb/article/15/2/75/5988533
Wheals, A. (1999). Fuel ethanol after 25 years. Trends in Biotechnology, 17, 482-487.
Xu, Y., Chi, P., Bilal, M., & Cheng, H. (2019). Biosynthetic strategies to produce xylitol: An economical venture. Applied Microbiology and Biotechnology, 103, 5143-5160.
Zhao, X. Q., & Bai, F. W. (2009). Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. Journal of Biotechnology, 144, 23-30.