Leaky mutations in the zeaxanthin epoxidase in Capsicum annuum result in bright-red fruit containing a high amount of zeaxanthin.
Abscisic acid
MutMap
Zeaxanthin epoxidase
carotenoid
ethyl methanesulfonate
mature fruit color
pepper
Journal
The Plant journal : for cell and molecular biology
ISSN: 1365-313X
Titre abrégé: Plant J
Pays: England
ID NLM: 9207397
Informations de publication
Date de publication:
05 Jan 2024
05 Jan 2024
Historique:
received:
26
09
2022
accepted:
21
12
2023
medline:
5
1
2024
pubmed:
5
1
2024
entrez:
5
1
2024
Statut:
aheadofprint
Résumé
Fruit color is one of the most important traits in peppers due to its esthetic value and nutritional benefits and is determined by carotenoid composition, resulting from diverse mutations of carotenoid biosynthetic genes. The EMS204 line, derived from an EMS mutant population, presents bright-red color, compared with the wild type Yuwolcho cultivar. HPLC analysis indicates that EMS204 fruit contains more zeaxanthin and less capsanthin and capsorubin than Yuwolcho. MutMap was used to reveal the color variation of EMS204 using an F
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Rural Development Administration
ID : PJ016543012023
Informations de copyright
© 2024 Society for Experimental Biology and John Wiley & Sons Ltd.
Références
Abe, A., Kosugi, S., Yoshida, K., Natsume, S., Takagi, H., Kanzaki, H. et al. (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 30, 174-178. Available from: http://www.nature.com/articles/nbt.2095
Agrawal, G.K., Yamazaki, M., Kobayashi, M., Hirochika, R., Miyao, A. & Hirochika, H. (2001) Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiology, 125, 1248-1257. Available from: https://doi.org/10.1104/pp.125.3.1248
Aklilu, E. (2021) Review on forward and reverse genetics in plant breeding. All Life, 14, 127-135. Available from: https://doi.org/10.1080/26895293.2021.1888810
Arisha, M.H., Shah, S.N.M., Gong, Z.-H., Jing, H., Li, C. & Zhang, H.-X. (2015) Ethyl methane sulfonate induced mutations in M2 generation and physiological variations in M1 generation of peppers (Capsicum annuum L.). Frontiers in Plant Science, 6, 399. Available from: https://doi.org/10.3389/fpls.2015.00399/abstract
Austin, R.S., Vidaurre, D., Stamatiou, G., Breit, R., Provart, N.J., Bonetta, D. et al. (2011) Next-generation mapping of Arabidopsis genes. The Plant Journal, 67, 715-725. Available from: https://doi.org/10.1111/j.1365-313X.2011.04619.x
Black, H.S., Boehm, F., Edge, R. & Truscott, T.G. (2020) The benefits and risks of certain dietary carotenoids that exhibit both anti- and pro-oxidative mechanisms-a comprehensive review. Antioxidants, 9, 264. Available from: https://www.mdpi.com/2076-3921/9/3/264
Borovsky, Y., Tadmor, Y., Bar, E., Meir, A., Lewinsohn, E. & Paran, I. (2013) Induced mutation in β-carotene hydroxylase results in accumulation of β-carotene and conversion of red to orange color in pepper fruit. Theoretical and Applied Genetics, 126, 557-565. Available from: https://doi.org/10.1007/s00122-012-2001-9
Bouvier, F., Hugueney, P., D’Harlingue, A., Kuntz, M. & Camara, B. (1994) Xanthophyll biosynthesis in chromoplasts: isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid into ketocarotenoid. The Plant Journal, 6, 45-54. Available from: https://doi.org/10.1046/j.1365-313x.1994.6010045.x
Bosland, P.W. (1992) Chiles: a diverse crop. HortTechnology, 2, 6-10. Available from: https://journals.ashs.org/view/journals/horttech/2/1/article-p6.xml
Burbidge, A., Grieve, T., Terry, C., Corlett, J., Thompson, A. & Taylor, I. (1997) Structure and expression of a cDNA encoding zeaxanthin epoxidase, isolated from a wilt-related tomato (Lycopersicon esculentum mill.) library. Journal of Experimental Botany, 48, 1749-1750. Available from: https://doi.org/10.1093/jxb/48.9.1749
Cao, Y., Zhang, Z., Zhang, T., You, Z., Geng, J., Wang, Y. et al. (2018) Overexpression of zeaxanthin epoxidase gene from Medicago sativa enhances the tolerance to low light in transgenic tobacco. Acta Biochimica Polonica, 65, 431-435.
Chen, R. (2012) Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnology Advances, 30, 1102-1107. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0734975011001662
Cheng, X., Ruyter-Spira, C. & Bouwmeester, H. (2013) The interaction between strigolactones and other plant hormones in the regulation of plant development. Frontiers in Plant Science, 17, 199. Available from: https://doi.org/10.3389/fpls.2013.00199/abstract
Desai, C.B. (2016) Solanaceae. In Meyler’s Side Effects of Drugs. Elsevier, pp. 424-426. Available from: https://doi.org/10.1016/b978-0-444-53717-1.01458-x
Dias, M.G., Olmedilla-Alonso, B., Hornero-Méndez, D., Mercadante, A.Z., Osorio, C., Vargas-Murga, L. et al. (2018) Comprehensive database of carotenoid contents in Ibero-American foods. A valuable tool in the context of functional foods and the establishment of recommended intakes of bioactives. Journal of Agricultural and Food Chemistry, 66, 5055-5107. Available from: https://doi.org/10.1021/acs.jafc.7b06148
Duan, H., Zhu, Y., Qi, D., Li, W., Hua, X., Liu, Y. et al. (2012) Comparative study on the expression of genes involved in carotenoid and ABA biosynthetic pathway in response to salt stress in tomato. Journal of Integrative Agriculture, 11, 1093-1102. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2095311912601026
Edwards, J.A. (2016) Zeaxanthin: review of toxicological data and acceptable daily intake. Journal of Ophthalmology, 2016, 1-15. Available from: http://www.hindawi.com/journals/joph/2016/3690140/
Färber, A. & Jahns, P. (1998) The xanthophyll cycle of higher plants: influence of antenna size and membrane organization. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1363, 47-58. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0005272897000935
Fenn, M.A. & Giovannoni, J.J. (2021) Phytohormones in fruit development and maturation. The Plant Journal, 105, 446-458. Available from: https://doi.org/10.1111/tpj.15112
Frey, A., Audran, C., Marin, E., Sotta, B. & Marion-Poll, A. (1999) Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression. Plant Molecular Biology, 39, 1267-1274.
Gale, C.R., Hall, N.F., Phillips, D.I.W. & Martyn, C.N. (2003) Lutein and Zeaxanthin status and risk of age-related macular degeneration. Investigative Ophthalmology & Visual Science, 44, 2461. Available from: https://doi.org/10.1167/iovs.02-0929
Galpaz, N., Wang, Q., Menda, N., Zamir, D. & Hirschberg, J. (2008) Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. The Plant Journal, 53, 717-730. Available from: https://doi.org/10.1111/j.1365-313X.2007.03362.x
Garcia, V., Bres, C., Just, D., Fernandez, L., Tai, F.W.J., Mauxion, J.P. et al. (2016) Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing. Nature Protocols, 11, 2401-2418. Available from: http://www.nature.com/articles/nprot.2016.143
Groot, S.P.C. & Karssen, C.M. (1992) Dormancy and germination of Abscisic acid-deficient tomato seeds. Plant Physiology, 99, 952-958. Available from: https://academic.oup.com/plphys/article/99/3/952-958/6087824
Gupta, K., Wani, S.H., Razzaq, A., Skalicky, M., Samantara, K., Gupta, S. et al. (2022) Abscisic acid: role in fruit development and ripening. Frontiers in Plant Science, 13, 817500. Available from: https://doi.org/10.3389/fpls.2022.817500/full
Gupta, P., Nutan, K.K., Singla-Pareek, S.L. & Pareek, A. (2017) Abiotic stresses cause differential regulation of alternative splice forms of GATA transcription factor in Rice. Frontiers in Plant Science, 8, 1944. Available from: https://doi.org/10.3389/fpls.2017.01944/full
Har Bhajan Singh & Bharati, K.A. (2014) Enumeration of dyes. Handbook of Natural Dyes and Pigments, 33-260. Available from: https://doi.org/10.1016/b978-93-80308-54-8.50006-x
Heath, J.J., Cipollini, D.F. & Stireman, J.O., III. (2013) The role of carotenoids and their derivatives in mediating interactions between insects and their environment. Arthropod-Plant Interactions, 7, 1-20. Available from: https://doi.org/10.1007/s11829-012-9239-7
Holden, J.M., Eldridge, A.L., Beecher, G.R., Marilyn Buzzard, I., Bhagwat, S., Davis, C.S. et al. (1999) Carotenoid content of U.S. foods: An update of the database. Journal of Food Composition and Analysis, 12, 169-196. Available from: https://linkinghub.elsevier.com/retrieve/pii/S088915759990827X
Holzmann, D., Bethmann, S. & Jahns, P. (2022) Zeaxanthin epoxidase activity is downregulated by hydrogen peroxide. Plant & Cell Physiology, 63, 1091-1100. Available from: https://academic.oup.com/pcp/article/63/8/1091/6604189
Hurtado-Hernandez, H. & Smith, P.G. (1985) Inheritance of mature fruit color in Capsicum annuum L. The Journal of Heredity, 76, 211-213. Available from: https://doi.org/10.1093/oxfordjournals.jhered.a110070
Hussain, Q., Asim, M., Zhang, R., Khan, R., Farooq, S. & Wu, J. (2021) Transcription factors interact with ABA through gene expression and signaling pathways to mitigate drought and salinity stress. Biomolecules, 11, 1159. Available from: https://www.mdpi.com/2218-273X/11/8/1159
Hwang, D., Jeong, H.-J., Kwon, J.-K., Kim, H., Kang, S.-Y. & Kang, B.-C. (2014) Phenotypic variants among ethyl methanesulfonate M 2 mutant lines in Capsicum annuum. Plant Genetic Resources, 12, S141-S145. Available from: https://www.cambridge.org/core/product/identifier/S1479262114000434/type/journal_article
Jabeen, N. & Mirza, B. (2002) Ethyl methane sulfonate enhances genetic variability in Capsicum annuum. Asian Journal of Plant Sciences, 1, 425-428. Available from: https://www.scialert.net/abstract/?doi=ajps.2002.425.428
Jeong, H., Kang, M., Jung, A. et al. (2019) Single-molecule real-time sequencing reveals diverse allelic variations in carotenoid biosynthetic genes in pepper (Capsicum spp.). Plant Biotechnology Journal, 17, 1081-1093. Available from: https://doi.org/10.1111/pbi.13039
Jeong, H.-B., Jang, S.-J., Kang, M.-Y., Kim, S., Kwon, J.-K. & Kang, B.-C. (2020) Candidate gene analysis reveals that the fruit color locus C1 corresponds to PRR2 in pepper (Capsicum frutescens). Frontiers in Plant Science, 11, 399. Available from: https://doi.org/10.3389/fpls.2020.00399/full
Johnson, E.J. (2002) The role of carotenoids in human health. Nutrition in Clinical Care, 5, 56-65. Available from: https://doi.org/10.1046/j.1523-5408.2002.00004.x
Joo, H., Lim, C.W. & Lee, S.C. (2019) Roles of pepper bZIP transcription factor Ca ATBZ 1 and its interacting partner RING −type E3 ligase Ca ASRF 1 in modulation of ABA signalling and drought tolerance. The Plant Journal, 100, 399-410. Available from: https://doi.org/10.1111/tpj.14451
Karniel, U., Koch, A., Zamir, D. & Hirschberg, J. (2020) Development of zeaxanthin-rich tomato fruit through genetic manipulations of carotenoid biosynthesis. Plant Biotechnology Journal, 18, 2292-2303. Available from: https://doi.org/10.1111/pbi.13387
Kim, J., Park, M., Jeong, E.S., Lee, J.M. & Choi, D. (2017) Harnessing anthocyanin-rich fruit: a visible reporter for tracing virus-induced gene silencing in pepper fruit. Plant Methods, 13, 3. Available from: https://doi.org/10.1186/s13007-016-0151-5
Krause, G.H., Köster, S. & Wong, S.C. (1985) Photoinhibition of photosynthesis under anaerobic conditions studied with leaves and chloroplasts of Spinacia oleracea L. Planta, 165, 430-438. Available from: https://doi.org/10.1007/BF00392242
Lee, H.-Y., Ro, N.-Y., Jeong, H.-J., Kwon, J.K., Jo, J., Ha, Y. et al. (2016) Genetic diversity and population structure analysis to construct a core collection from a large capsicum germplasm. BMC Genetics, 17, 142. Available from: https://doi.org/10.1186/s12863-016-0452-8
Lee, J.-H., An, J.-T., Siddique, M.I., Han, K., Choi, S., Kwon, J.-K. et al. (2017) Identification and molecular genetic mapping of Chili veinal mottle virus (ChiVMV) resistance genes in pepper (Capsicum annuum). Molecular Breeding, 37, 121. Available from: https://doi.org/10.1007/s11032-017-0717-6
Lee, J.-H., Venkatesh, J., Jo, J., Jang, S., Kim, G.W., Kim, J.M. et al. (2022) High-quality chromosome-scale genomes facilitate effective identification of large structural variations in hot and sweet peppers. Horticulture Research, 9, 1-13. Available from: https://doi.org/10.1093/hr/uhac210/6705560
Lee, S.B., Kim, J.E., Kim, H.T., Lee, G.-M., Kim, B.-S. & Lee, J.M. (2020) Genetic mapping of the c1 locus by GBS-based BSA-seq revealed pseudo-response regulator 2 as a candidate gene controlling pepper fruit color. Theoretical and Applied Genetics, 133, 1897-1910. Available from: https://doi.org/10.1007/s00122-020-03565-5
Lee, S.-Y., Jang, S., Jeong, H., Lee, S.-Y., Venkatesh, J., Lee, J. et al. (2021) A mutation in zeaxanthin epoxidase contributes to orange coloration and alters carotenoid contents in pepper fruit (Capsicum annuum). The Plant Journal, 106, 1692-1707. Available from: https://doi.org/10.1111/tpj.15264
Lefebvre, V., Kuntz, M., Camara, B. & Palloix, A. (1998) The capsanthin-capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit colour in pepper. Plant Molecular Biology, 36, 785-789.
Li, J., Wu, Y., Xie, Q. & Gong, Z. (2017) Abscisic acid. In: Hormone metabolism and signaling in plants. The Netherlands, pp. 243-272. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128115626000050
Li, Y. & Walton, D.C. (1990) Violaxanthin is an Abscisic acid precursor in water-stressed dark-grown bean leaves. Plant Physiology, 92, 551-559. Available from: https://academic.oup.com/plphys/article/92/3/551-559/6085083
Liao, Y., Bai, Q., Xu, P., Wu, T., Guo, D., Peng, Y. et al. (2018) Mutation in rice abscisic acid2 results in cell death, enhanced disease-resistance, altered seed dormancy and development. Frontiers in Plant Science, 9, 1-15.
Lichtenthaler, H.K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol, 148, 350-382. Available from: https://linkinghub.elsevier.com/retrieve/pii/0076687987480361
Lieberman, M., Segev, O., Gilboa, N., Lalazar, A. & Levin, I. (2004) The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theoretical and Applied Genetics, 108, 1574-1581. Available from: https://doi.org/10.1007/s00122-004-1584-1
Liu, G., Yu, H., Yuan, L., Li, C., Ye, J., Chen, W. et al. (2021) SlRCM1, which encodes tomato Lutescent1, is required for chlorophyll synthesis and chloroplast development in fruits. Horticulture Research, 8, 128. Available from: https://academic.oup.com/hr/article/6446650
Lou, Y., Sun, H., Li, L., Zhao, H. & Gao, Z. (2017) Characterization and primary functional analysis of a bamboo ZEP gene from Phyllostachys edulis. DNA and Cell Biology, 36, 747-758. Available from: https://doi.org/10.1089/dna.2017.3705
Marin, E., Nussaume, L., Quesada, A., Gonneau, M., Sotta, B., Hugueney, P. et al. (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. The EMBO Journal, 15, 2331-2342. Available from: https://doi.org/10.1002/j.1460-2075.1996.tb00589.x
Marrush, M., Yamaguchi, M. & Saltveit, M.E. (1998) Effect of potassium nutrition during bell pepper seed development on Vivipary and endogenous levels of Abscisic acid (ABA). The Journal of the American Society for Horticultural Science, 123, 925-930. Available from: https://journals.ashs.org/view/journals/jashs/123/5/article-p925.xml
Miyoshi, K., Nakata, E. & Nagato, Y. (2000) Characterization of viviparous mutants in rice. Breeding Science, 50, 207-213. Available from: http://www.jstage.jst.go.jp/article/jsbbs1999/50/3/50_3_207/_article
Mustilli, A.C., Fenzi, F., Ciliento, R., Alfano, F. & Bowler, C. (1999) Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell, 11, 145-157. Available from: https://academic.oup.com/plcell/article/11/2/145-157/6008437
Neuman, H., Galpaz, N., Cunningham, F.X., Zamir, D. & Hirschberg, J. (2014) The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. The Plant Journal, 78, 80-93. Available from: https://doi.org/10.1111/tpj.12451
Niyogi, K.K. (1999) Photoprotection revisited: genetic and molecular approaches. Annual Review of Plant Biology, 50, 333-359.
O'Hare, T.J., Fanning, K.J. & Martin, I.F. (2015) Zeaxanthin biofortification of sweet-corn and factors affecting zeaxanthin accumulation and colour change. Archives of Biochemistry and Biophysics, 572, 184-187. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003986115000405
Paran, I., Borovsky, Y., Nahon, S. & Cohen, O. (2007) The use of induced mutations to study shoot architecture in capsicum. Israel Journal of Plant Sciences, 55, 125-131. Available from: https://doi.org/10.1560/IJPS.55.2.125
Park, H.Y., Seok, H.Y., Park, B.K., Kim, S.H., Goh, C.H., Lee, B.H. et al. (2008) Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochemical and Biophysical Research Communications, 375, 80-85.
Perry, A., Rasmussen, H. & Johnson, E.J. (2009) Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. Journal of Food Composition and Analysis, 22, 9-15.
Pinheiro, G.K., Araújo Filho, I.D., Araújo Neto, I.D., Rêgo, A.C., Azevedo, E.P., Pinheiro, F.I. et al. (2018) Nature as a source of drugs for ophthalmology. Arquivos Brasileiros de Oftalmologia, 81, 443-454. Available from: https://doi.org/10.5935/0004-2749.20180086
Pla, M., Goday, A., Vilardell, J., Gómez, J. & Pagès, M. (1989) Differential regulation of ABA-induced 23?25 kDa proteins in embryo and vegetative tissues of the viviparous mutants of maize. Plant Molecular Biology, 13, 385-394. Available from: https://doi.org/10.1007/BF00015550
Popovsky, S. & Paran, I. (2000) Molecular genetics of the y locus in pepper: its relation to capsanthin-capsorubin synthase and to fruit color. Theoretical and Applied Genetics, 101, 86-89. Available from: https://doi.org/10.1007/s001220051453
Porra, R.J., Thompson, W.A. & Kriedemann, P.E. (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 975, 384-394. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0005272889803470
Rosano, G.L. & Ceccarelli, E.A. (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5, 172. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24860555
Sah, S.K., Reddy, K.R. & Li, J. (2016) Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 7, 571. Available from: https://doi.org/10.3389/fpls.2016.00571/abstract
Sahu, P.K., Sao, R., Mondal, S., Vishwakarma, G., Gupta, S.K., Kumar, V. et al. (2020) Next generation sequencing based forward genetic approaches for identification and mapping of causal mutations in crop plants: a comprehensive review. Plants, 9, 1355. Available from: https://www.mdpi.com/2223-7747/9/10/1355
Sajilata, M.G., Singhal, R.S. & Kamat, M.Y. (2008) The carotenoid pigment Zeaxanthin-a review. Comprehensive Reviews in Food Science and Food Safety, 7, 29-49. Available from: https://doi.org/10.1111/j.1541-4337.2007.00028.x
Salem, M.A., Yoshida, T., Perez de Souza, L., Alseekh, S., Bajdzienko, K., Fernie, A.R. et al. (2020) An improved extraction method enables the comprehensive analysis of lipids, proteins, metabolites and phytohormones from a single sample of leaf tissue under water-deficit stress. The Plant Journal, 103, 1614-1632. Available from: https://doi.org/10.1111/tpj.14800
Schneeberger, K., Ossowski, S., Lanz, C., Juul, T., Petersen, A.H., Nielsen, K.L. et al. (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nature Methods, 6, 550-551. Available from: http://www.nature.com/articles/nmeth0809-550
Schneeberger, K. & Weigel, D. (2011) Fast-forward genetics enabled by new sequencing technologies. Trends in Plant Science, 16, 282-288. Available from: https://linkinghub.elsevier.com/retrieve/pii/S136013851100029X
Schwarz, N., Armbruster, U., Iven, T., Brückle, L., Melzer, M., Feussner, I. et al. (2015) Tissue-specific accumulation and regulation of zeaxanthin epoxidase in arabidopsis reflect the multiple functions of the enzyme in plastids. Plant & Cell Physiology, 56, 346-357. Available from: https://doi.org/10.1093/pcp/pcu167
Siddique, M.I., Back, S., Lee, J.-H., Jo, J., Jang, S., Han, K. et al. (2020) Development and characterization of an ethyl methane sulfonate (EMS) induced mutant population in Capsicum annuum L. Plants, 9, 396. Available from: https://www.mdpi.com/2223-7747/9/3/396
Song, S., Chen, Y., Zhao, M. & Zhang, W.-H. (2012) A novel Medicago truncatula HD-zip gene, MtHB2, is involved in abiotic stress responses. Environmental and Experimental Botany, 80, 1-9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0098847212000299
The Age-Related Eye Disease Study 2 (AREDS2) Research Group. (2013) Lutein + Zeaxanthin and Omega-3 Fatty acids for age-related macular degeneration. JAMA, 309, 2005. Available from: https://doi.org/10.1001/jama.2013.4997
Thompson, A.J., Jackson, A.C., Parker, R.A., Morpeth, D.R., Burbidge, A. & Taylor, I.B. (2000) Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidaseand 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Plant Molecular Biology, 42, 833-845.
Wang, N., Fang, W., Han, H., Sui, N., Li, B. & Meng, Q.-W. (2008) Overexpression of zeaxanthin epoxidase gene enhances the sensitivity of tomato PSII photoinhibition to high light and chilling stress. Physiologia Plantarum, 132, 384-396. Available from: https://doi.org/10.1111/j.1399-3054.2007.01016.x
Wang, X., Zhang, L., Xu, X., Qu, W., Li, J., Xu, X. et al. (2016) Seed development and viviparous germination in one accession of a tomato rin mutant. Breeding Science, 66, 372-380. Available from: https://www.jstage.jst.go.jp/article/jsbbs/66/3/66_15149/_article
Xu, G., Kafkafi, U., Wolf, S. & Sugimoto, Y. (2002) Mother plant nutrition and growing condition affect amino and FATTY acid compositions of hybrid sweet PEPPER seeds. Journal of Plant Nutrition, 25, 1645-1665. Available from: https://doi.org/10.1081/PLN-120006049
Yoo, H., Park, W., Lee, G.-M., Oh, C.-S., Yeam, I., Won, D.-C. et al. (2017) Inferring the genetic determinants of fruit colors in tomato by carotenoid profiling. Molecules, 22, 764. Available from: http://www.mdpi.com/1420-3049/22/5/764
Zhang, Z., Wang, Y., Chang, L., Zhang, T., An, J., Liu, Y. et al. (2016) MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. Plant Cell Reports, 35, 439-453.
Zhao, P., Cui, R., Xu, P., Wu, J., Mao, J.-L., Chen, Y. et al. (2017) ATHB17 enhances stress tolerance by coordinating photosynthesis associated nuclear gene and ATSIG5 expression in response to abiotic stress. Scientific Reports, 7, 45492. Available from: https://www.nature.com/articles/srep45492
Zhao, Y., Ma, Q., Jin, X. et al. (2014) A Novel Maize Homeodomain-Leucine Zipper (HD-Zip) I Gene, Zmhdz10, Positively Regulates Drought and Salt Tolerance in Both Rice and Arabidopsis. Plant & Cell Physiology, 55, 1142-1156. Available from: https://doi.org/10.1093/pcp/pcu054
Zhu, J.-K. (2002) Salt and drought stress signal transduction in plants/P LANTS. Annual Review of Plant Biology, 53, 247-273. Available from: https://doi.org/10.1146/annurev.arplant.53.091401.143329