Recent progress of MXene as an energy storage material.
Journal
Nanoscale horizons
ISSN: 2055-6764
Titre abrégé: Nanoscale Horiz
Pays: England
ID NLM: 101712576
Informations de publication
Date de publication:
05 Jan 2024
05 Jan 2024
Historique:
medline:
5
1
2024
pubmed:
5
1
2024
entrez:
5
1
2024
Statut:
aheadofprint
Résumé
Thanks to its adjustable interlayer distance, large specific surface area, abundant active sites, and diverse surface functional groups, MXene has always been regarded as an excellent candidate for energy storage materials, including supercapacitors and ion batteries. Recent studies have also shown that MXene can serve as an efficient hydrogen storage catalyst. This review aims to summarize the latest research achievements in the field of MXene, especially its performance and application in energy storage. Different synthesis techniques have different effects on the energy storage performance of MXene. In this review, various common synthesis methods and the latest innovations in synthesis methods are discussed. MXene is prone to oxidation, and how to resist oxidation is also an important topic in MXene research. This article introduces the research results on improving the chemical stability of MXene through annealing. In addition, it aims to gain a deeper understanding of the future development and potential of MXene.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM