Evaluation of the test-retest and inter-mode comparability of the Impact of Vision Impairment questionnaire in people with chronic eye diseases.

Impact of Vision Impairment scale Patient-reported outcome Quality of life Reliability

Journal

Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
ISSN: 1435-702X
Titre abrégé: Graefes Arch Clin Exp Ophthalmol
Pays: Germany
ID NLM: 8205248

Informations de publication

Date de publication:
05 Jan 2024
Historique:
received: 14 06 2023
accepted: 30 11 2023
revised: 03 11 2023
medline: 5 1 2024
pubmed: 5 1 2024
entrez: 5 1 2024
Statut: aheadofprint

Résumé

The main objective of this study is to assess the test-retest and inter-administration mode reliability of the Impact of Vision Impairment profile (IVI), a common patient-reported outcome measure (PROM) for people with chronic eye diseases. The IVI was administered to adult patients with stable, chronic eye diseases two to four times per participant (average intervals between administrations 12 to 20 days; maximum two phone interviews, paper administration, electronic administration) by two trained interviewers. Rasch models were fit to the data. Intra-class correlation coefficients (ICCs), mean differences and Cronbach's alpha between test-retest administrations (two phone interviews) and inter-mode comparisons were calculated. Two hundred-sixteen patients (mean age 67 ± 12 years, 40% male) were included in the study. The IVI met all psychometric requirements of the Rasch model, and the division into the domains of functional items (IVI_F) and emotional items (IVI_E) corresponded to the German validation study. ICCs (all for IVI_F and IVI_E, respectively) for the retest administrations were 0.938 and 0.912, and 0.853 and 0.893 for inter-mode comparisons phone/paper, 0.939 and 0.930 for phone/electronic, and 0.937 and 0.920 for paper/electronic (all p < 0.01). Mean differences (all for IVI_F and IVI_E, respectively) for the retest administrations were 2.8% and 0.7% and ranged from 2.0% to 6.2% and from 0.4 % to 4.9% between administration modes. Cronbach's alpha ranged from 0.886 to 0.944 for retest and inter-mode comparisons. Due to the high test-retest reliability and the almost equally high comparability of different modes of administration of the IVI, the study endorses its use as a robust PROM to capture vision-related quality of life. Our results further support the use of the IVI as an endpoint in clinical trials and may simplify implementing it in both clinical trials or real-world evidence generation by offering multiple administration modes with high reliability.

Identifiants

pubmed: 38180569
doi: 10.1007/s00417-023-06334-4
pii: 10.1007/s00417-023-06334-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Loukanova S, Bridges J (2008) Empowerment in medicine: an analysis of publication trends 1980–2005. Open Med 3:105–110. https://doi.org/10.2478/s11536-007-0066-7
doi: 10.2478/s11536-007-0066-7
Nelson EC, Eftimovska E, Lind C et al (2015) Patient reported outcome measures in practice. BMJ 350:g7818. https://doi.org/10.1136/bmj.g7818
doi: 10.1136/bmj.g7818 pubmed: 25670183
Dean S, Mathers JM, Calvert M et al (2017) “The patient is speaking”: discovering the patient voice in ophthalmology. Br J Ophthalmol 101:700–708. https://doi.org/10.1136/bjophthalmol-2016-309955
doi: 10.1136/bjophthalmol-2016-309955 pubmed: 28455280
Braithwaite T, Calvert M, Gray A et al (2019) The use of patient-reported outcome research in modern ophthalmology: impact on clinical trials and routine clinical practice. Patient Relat Outcome Meas 10:9–24. https://doi.org/10.2147/PROM.S162802
doi: 10.2147/PROM.S162802 pubmed: 30774489 pmcid: 6352858
Finger RP, Fenwick E, Marella M et al (2011) The Impact of Vision Impairment on vision-specific quality of life in Germany. Invest Ophthalmol Vis Sci 52:3613–3619. https://doi.org/10.1167/iovs.10-7127
doi: 10.1167/iovs.10-7127 pubmed: 21357395
Varma R, Wu J, Chong K et al (2006) Impact of severity and bilaterality of visual impairment on health-related quality of life. Ophthalmology 113:1846–1853. https://doi.org/10.1016/j.ophtha.2006.04.028
doi: 10.1016/j.ophtha.2006.04.028 pubmed: 16889831
Knauer C, Pfeiffer N (2008) The value of vision. Graefes Arch Clin Exp Ophthalmol 246:477–482. https://doi.org/10.1007/s00417-007-0668-4
doi: 10.1007/s00417-007-0668-4 pubmed: 18071740
de Boer MR, Pluijm SMF, Lips P et al (2004) Different aspects of visual impairment as risk factors for falls and fractures in older men and women. J Bone Miner Res 19:1539–1547. https://doi.org/10.1359/JBMR.040504
doi: 10.1359/JBMR.040504 pubmed: 15312256
Luu W, Kalloniatis M, Bartley E et al (2020) A holistic model of low vision care for improving vision-related quality of life. Clin Exp Optom 103:733–741. https://doi.org/10.1111/cxo.13054
doi: 10.1111/cxo.13054 pubmed: 32128871
Massof RW, Rubin GS (2001) Visual function assessment questionnaires. Surv Ophthalmol 45:531–548. https://doi.org/10.1016/S0039-6257(01)00194-1
doi: 10.1016/S0039-6257(01)00194-1 pubmed: 11425359
Lamoureux EL, Pallant JF, Pesudovs K et al (2007) The effectiveness of low-vision rehabilitation on participation in daily living and quality of life. Invest Ophthalmol Vis Sci 48:1476–1482. https://doi.org/10.1167/IOVS.06-0610
doi: 10.1167/IOVS.06-0610 pubmed: 17389474
Frost MH, Reeve BB, Liepa AM et al (2007) What is sufficient evidence for the reliability and validity of patient-reported outcome measures? Value Health 10(Suppl 2):94–105. https://doi.org/10.1111/j.1524-4733.2007.00272.x
doi: 10.1111/j.1524-4733.2007.00272.x
Labiris G, Katsanos A, Fanariotis M et al (2008) Psychometric properties of the Greek version of the NEI-VFQ 25. BMC Ophthalmol 8:4. https://doi.org/10.1186/1471-2415-8-4
doi: 10.1186/1471-2415-8-4 pubmed: 18325083 pmcid: 2287166
Cassard SD, Patrick DL, Damiano AM et al (1995) Reproducibility and responsiveness of the VF-14. An index of functional impairment in patients with cataracts. Arch Ophthalmol 113:1508–1513. https://doi.org/10.1001/archopht.1995.01100120038005
doi: 10.1001/archopht.1995.01100120038005 pubmed: 7487617
Hassell JB, Lamoureux EL, Keeffe JE (2006) Impact of age related macular degeneration on quality of life. Br J Ophthalmol 90:593–596. https://doi.org/10.1136/bjo.2005.086595
doi: 10.1136/bjo.2005.086595 pubmed: 16622089 pmcid: 1857044
Pondorfer SG, Terheyden JH, Heinemann M et al (2019) Association of vision-related quality of life with visual function in age-related macular degeneration. Sci Rep 9:15326. https://doi.org/10.1038/s41598-019-51769-7
doi: 10.1038/s41598-019-51769-7 pubmed: 31653904 pmcid: 6814705
Tan JCK, Nguyen V, Fenwick E et al (2019) Vision-related quality of life in keratoconus: a save sight keratoconus registry study. Cornea 38:600–604. https://doi.org/10.1097/ICO.0000000000001899
doi: 10.1097/ICO.0000000000001899 pubmed: 30730335
Finger RP, Guymer RH, Gillies MC et al (2014) The impact of anti-vascular endothelial growth factor treatment on quality of life in neovascular age-related macular degeneration. Ophthalmology 121:1246–1251. https://doi.org/10.1016/j.ophtha.2013.12.032
doi: 10.1016/j.ophtha.2013.12.032 pubmed: 24518613
Kanellopoulos AJ (2019) The impact of keratoconus treatment with the Athens Protocol (partial topography-guided photorefractive keratectomy combined with higher-fluence corneal collagen cross-linking) on quality of life: a long-term study. Clin Ophthalmol 13:795–803. https://doi.org/10.2147/OPTH.S188519
doi: 10.2147/OPTH.S188519 pubmed: 31118557 pmcid: 6501993
de Boer MR, Moll AC, de Vet HCW et al (2004) Psychometric properties of vision-related quality of life questionnaires: a systematic review. Ophthalmic Physiol Opt 24:257–273. https://doi.org/10.1111/j.1475-1313.2004.00187.x
doi: 10.1111/j.1475-1313.2004.00187.x pubmed: 15228503
Marakis TP, Koutsandrea C, Poulou MS (2020) The Impact of Vision Impairment on vision-related quality of life of patients with neovascular age-related macular degeneration. Eur J Ophthalmol 32:481–490. https://doi.org/10.1177/1120672120972625
doi: 10.1177/1120672120972625 pubmed: 33213182
Ratanasukon M, Tongsomboon J, Bhurayanontachai P et al (2016) The Impact of Vision Impairment (IVI) questionnaire; validation of the Thai-version and the implementation on vision-related quality of life in Thai rural community. PLoS ONE 11:e0155509. https://doi.org/10.1371/journal.pone.0155509
doi: 10.1371/journal.pone.0155509 pubmed: 27191960 pmcid: 4871442
Weih LM, Hassell JB, Keeffe J (2002) Assessment of the Impact of Vision Impairment. Invest Ophthalmol Vis Sci 43:927–935
pubmed: 11923230
Evans JR, Mathur A (2005) The value of online surveys. Internet Res 15:195–219. https://doi.org/10.1108/10662240510590360
doi: 10.1108/10662240510590360
Frost NA, Sparrow JM, Hopper CD et al (2001) Reliability of the VCM1 questionnaire when administered by post and by telephone. Ophthalmic Epidemiol 8:1–11. https://doi.org/10.1076/opep.8.1.1.1539
doi: 10.1076/opep.8.1.1.1539 pubmed: 11262678
Wolffsohn JS, Cochrane AL, Watt NA (2000) Implementation methods for vision related quality of life questionnaires. Br J Ophthalmol 84:1035–1040. https://doi.org/10.1136/bjo.84.9.1035
doi: 10.1136/bjo.84.9.1035 pubmed: 10966961 pmcid: 1723647
Mokkink LB, Prinsen CAC, Patrick DL et al. (2019) COSMIN study design checklist for patient-reported outcome measurement instruments. https://www.cosmin.nl/wp-content/uploads/COSMIN-study-designing-checklist_final.pdf . Accessed 10 Oct 2023
Lamoureux EL, Pallant JF, Pesudovs K et al (2006) The Impact of Vision Impairment questionnaire: an evaluation of its measurement properties using Rasch analysis. Invest Ophthalmol Vis Sci 47:4732–4741. https://doi.org/10.1167/IOVS.06-0220
doi: 10.1167/IOVS.06-0220 pubmed: 17065481
Keeffe JE, McCarty CA, Hassell JB et al (1999) Description and measurement of handicap caused by vision impairment. Aust N Z J Ophthalmol 27:184–186. https://doi.org/10.1046/j.1440-1606.1999.00179.x
doi: 10.1046/j.1440-1606.1999.00179.x pubmed: 10484186
Hassell JB, Weih LM, Keeffe JE (2000) A measure of handicap for low vision rehabilitation: the Impact of Vision Impairment profile. Clin Exp Ophthalmol 28:156–161. https://doi.org/10.1046/J.1442-9071.2000.00312.X
doi: 10.1046/J.1442-9071.2000.00312.X pubmed: 10981786
Terheyden JH, Pondorfer SG, Behning C et al (2023) Disease-specific assessment of vision impairment in low luminance in age-related macular degeneration - a MACUSTAR study report. Br J Ophthalmol 107:1144–1150. https://doi.org/10.1136/bjophthalmol-2021-320848
doi: 10.1136/bjophthalmol-2021-320848 pubmed: 35354561
Wright BD, Linacre JM (1989) Observations are always ordinal; measurements, however, must be interval. Arch Phys Med Rehabil 70:857–860
pubmed: 2818162
Linacre JM (2006) A user’s guide to Winsteps/Ministep: Rasch-model computer programs. Mesa Press, Chicago
Waterbury GT (2019) Missing data and the Rasch model: the effects of missing data mechanisms on item parameter estimation. J Appl Meas 20:154–166
pubmed: 31120433
Herzog AR, Rodgers WL (1988) Interviewing older adults: mode comparison using data from a face-to-face survey and a telephone resurvey. Public Opin Q 52:84–99
doi: 10.1086/269083
Hochstim JR (1967) A critical comparison of three strategies of collecting data from households. J Am Stat Assoc 62:976. https://doi.org/10.2307/2283686
doi: 10.2307/2283686
Wright BD, Masters GN (1982) Rating scale analysis: Rasch measurement. Mesa Press, Chicago
Boone WJ, Noltemeyer A (2017) Rasch analysis: a primer for school psychology researchers and practitioners. Cogent Educ 4:202. https://doi.org/10.1080/2331186X.2017.1416898
doi: 10.1080/2331186X.2017.1416898
Bond TG, Fox CM (2001) Applying the Rasch model: fundamental measurement in the human sciences, 1st edn. Lawrence Erlbaum Associates Publishers, New York
doi: 10.4324/9781410600127
Wright BD, Linacre JM (1994) Reasonable mean-square fit values. Rasch Measure Transact 8:370–371
Zwick R, Thayer DT, Lewis C (1999) An empirical bayes approach to Mantel-Haenszel DIF Analysis. J Educ Meas 36:1–28. https://doi.org/10.1111/j.1745-3984.1999.tb00543.x
doi: 10.1111/j.1745-3984.1999.tb00543.x
Mohamad Adam Bujang, Hon Yoon Khee, Lee Keng Yee (2022) A step-by-step guide to questionnaire validation research. https://doi.org/10.5281/zenodo.6801208
McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1:30–46. https://doi.org/10.1037/1082-989X.1.1.30
doi: 10.1037/1082-989X.1.1.30
Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012
doi: 10.1016/j.jcm.2016.02.012 pubmed: 27330520 pmcid: 4913118
Cicchetti DV, Sparrow SA (1981) Developing criteria for establishing interrater reliability of specific items: applications to assessment of adaptive behavior. Am J Ment Defic 86:127–137
pubmed: 7315877
Giavarina D (2015) Understanding Bland Altman analysis. Biochem Med (Zagreb) 25:141–151. https://doi.org/10.11613/BM.2015.015
doi: 10.11613/BM.2015.015 pubmed: 26110027
Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310
doi: 10.1016/S0140-6736(86)90837-8 pubmed: 2868172
Vaz S, Falkmer T, Passmore AE et al (2013) The case for using the repeatability coefficient when calculating test-retest reliability. PLoS ONE 8:e73990. https://doi.org/10.1371/journal.pone.0073990
doi: 10.1371/journal.pone.0073990 pubmed: 24040139 pmcid: 3767825
Deming WE (1943) Statistical adjustment of data. J Wiley & Sons Inc, New York
Ciccione L, Dehaene S (2021) Can humans perform mental regression on a graph? Accuracy and bias in the perception of scatterplots. Cogn Psychol 128:101406. https://doi.org/10.1016/j.cogpsych.2021.101406
doi: 10.1016/j.cogpsych.2021.101406 pubmed: 34214734
Nichols KK, Mitchell GL, Zadnik K (2002) Performance and repeatability of the NEI-VFQ-25 in patients with dry eye. Cornea 21:578–583. https://doi.org/10.1097/00003226-200208000-00009
doi: 10.1097/00003226-200208000-00009 pubmed: 12131034
Gwaltney CJ, Shields AL, Shiffman S (2008) Equivalence of electronic and paper-and-pencil administration of patient-reported outcome measures: a meta-analytic review. Value Health 11:322–333. https://doi.org/10.1111/j.1524-4733.2007.00231.x
doi: 10.1111/j.1524-4733.2007.00231.x pubmed: 18380645
Clayton JA, Eydelman M, Vitale S et al (2013) Web-based versus paper administration of common ophthalmic questionnaires: comparison of subscale scores. Ophthalmology 120:2151–2159. https://doi.org/10.1016/j.ophtha.2013.03.019
doi: 10.1016/j.ophtha.2013.03.019 pubmed: 23714321
Terheyden JH, Mekschrat L, Ost RAD et al (2022) Interviewer administration corresponds to self-administration of the vision impairment in low luminance (VILL) questionnaire. Trans Vis Sci Tech 11:21. https://doi.org/10.1167/tvst.11.4.21
doi: 10.1167/tvst.11.4.21
Goldstein JE, Fenwick E, Finger RP et al (2018) Calibrating the Impact of Vision Impairment (IVI): creation of a sample-independent visual function measure for patient-centered outcomes research. Translat Vision Sci Technol 7:38. https://doi.org/10.1167/tvst.7.6.38
doi: 10.1167/tvst.7.6.38
Lamoureux EL, Ferraro JG, Pallant JF et al (2007) Are standard instruments valid for the assessment of quality of life and symptoms in glaucoma? Optom Vis Sci 84:789–796. https://doi.org/10.1097/OPX.0b013e3181334b83
doi: 10.1097/OPX.0b013e3181334b83 pubmed: 17700342
Taylor DJ, Jones L, Edwards L et al (2021) Patient-reported outcome measures in ophthalmology: too difficult to read? BMJ Open Ophthalmol 6:e000693. https://doi.org/10.1136/bmjophth-2020-000693
doi: 10.1136/bmjophth-2020-000693 pubmed: 34212114 pmcid: 8208024
Ayton LN, Rizzo JF, Bailey IL et al (2020) Harmonization of outcomes and vision endpoints in vision restoration trials: recommendations from the international HOVER taskforce. Trans Vis Sci Tech 9:25. https://doi.org/10.1167/tvst.9.8.25
doi: 10.1167/tvst.9.8.25
Hobart J, Cano S (2009) Improving the evaluation of therapeutic interventions in multiple sclerosis: the role of new psychometric methods. Health Technol Assess 13:iii, ix–x 1–177. https://doi.org/10.3310/hta13120

Auteurs

Jan Henrik Terheyden (JH)

Department of Ophthalmology, University Hospital Bonn, Ernst-Abbe-Str. 2, 53127, Bonn, Germany. jan.terheyden@ukbonn.de.

Reglind A D Ost (RAD)

Department of Ophthalmology, University Hospital Bonn, Ernst-Abbe-Str. 2, 53127, Bonn, Germany.

Charlotte Behning (C)

Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany.

Liza Mekschrat (L)

Department of Ophthalmology, University Hospital Bonn, Ernst-Abbe-Str. 2, 53127, Bonn, Germany.

Gamze Bildik (G)

Department of Ophthalmology, University Hospital Bonn, Ernst-Abbe-Str. 2, 53127, Bonn, Germany.

Maximilian W M Wintergerst (MWM)

Department of Ophthalmology, University Hospital Bonn, Ernst-Abbe-Str. 2, 53127, Bonn, Germany.

Frank G Holz (FG)

Department of Ophthalmology, University Hospital Bonn, Ernst-Abbe-Str. 2, 53127, Bonn, Germany.

Robert P Finger (RP)

Department of Ophthalmology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany. RobertPatrick.Finger@umm.de.

Classifications MeSH