Fluvoxamine Exerts Sigma-1R to Rescue Autophagy via Pom121-Mediated Nucleocytoplasmic Transport of TFEB.
C9orf72-amyotrophic lateral sclerosis
Fluvoxamine
Nucleocytoplasmic transport
Nucleoporin Pom121
Sigma-1 receptor
Journal
Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963
Informations de publication
Date de publication:
05 Jan 2024
05 Jan 2024
Historique:
received:
17
09
2023
accepted:
12
12
2023
medline:
5
1
2024
pubmed:
5
1
2024
entrez:
5
1
2024
Statut:
aheadofprint
Résumé
Expansion of the GGGGCC-RNA repeat is a known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which currently have no cure. Recent studies have indicated the activation of Sigma-1 receptor plays an important role in providing neuroprotection, especially in ALS and Alzheimer's disease. Nevertheless, the mechanisms underlying Sigma-1R activation and its effect on (G
Identifiants
pubmed: 38180612
doi: 10.1007/s12035-023-03885-9
pii: 10.1007/s12035-023-03885-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G, Janssens J, Bettens K, Van Cauwenberghe C, Pereson S, Engelborghs S, Sieben A, De Jonghe P, Vandenberghe R, Santens P, De Bleecker J, Maes G, Baumer V, Dillen L et al (2012) A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11(1):54–65. https://doi.org/10.1016/S1474-4422(11)70261-7
doi: 10.1016/S1474-4422(11)70261-7
pubmed: 22154785
Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–268. https://doi.org/10.1016/j.neuron.2011.09.010
doi: 10.1016/j.neuron.2011.09.010
pubmed: 21944779
pmcid: 3200438
Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB, Steinwald P, Daley EL, Miller SJ, Cunningham KM, Vidensky S, Gupta S, Thomas MA, Hong I, Chiu SL, Huganir RL, Ostrow LW, Matunis MJ, Wang J, Sattler R et al (2015) The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525(7567):56–61. https://doi.org/10.1038/nature14973
doi: 10.1038/nature14973
pubmed: 26308891
pmcid: 4800742
Czuppa M, Dhingra A, Zhou Q, Schludi C, Konig L, Scharf E, Farny D, Dalmia A, Tager J, Castillo-Lizardo M, Katona E, Mori K, Aumer T, Schelter F, Muller M, Carell T, Kalliokoski T, Messinger J, Rizzu P et al (2022) Drug screen in iPSC-neurons identifies nucleoside analogs as inhibitors of (G(4)C(2))(n) expression in C9orf72 ALS/FTD. Cell Rep 39(10):110913. https://doi.org/10.1016/j.celrep.2022.110913
doi: 10.1016/j.celrep.2022.110913
pubmed: 35675776
Gleixner AM, Verdone BM, Otte CG, Anderson EN, Ramesh N, Shapiro OR, Gale JR, Mauna JC, Mann JR, Copley KE, Daley EL, Ortega JA, Cicardi ME, Kiskinis E, Kofler J, Pandey UB, Trotti D, Donnelly CJ (2022) NUP62 localizes to ALS/FTLD pathological assemblies and contributes to TDP-43 insolubility. Nat Commun 13(1):3380. https://doi.org/10.1038/s41467-022-31098-6
doi: 10.1038/s41467-022-31098-6
pubmed: 35697676
pmcid: 9192689
Lee PT, Lievens JC, Wang SM, Chuang JY, Khalil B, Wu HE, Chang WC, Maurice T, Su TP (2020) Sigma-1 receptor chaperones rescue nucleocytoplasmic transport deficit seen in cellular and Drosophila ALS/FTD models. Nat Commun 11(1):5580. https://doi.org/10.1038/s41467-020-19396-3
doi: 10.1038/s41467-020-19396-3
pubmed: 33149115
pmcid: 7642387
Wang SM, Wu HE, Yasui Y, Geva M, Hayden M, Maurice T, Cozzolino M, Su TP (2023) Nucleoporin POM121 signals TFEB-mediated autophagy via activation of SIGMAR1/sigma-1 receptor chaperone by pridopidine. Autophagy 19(1):126–151. https://doi.org/10.1080/15548627.2022.2063003
doi: 10.1080/15548627.2022.2063003
pubmed: 35507432
Wang H, Wang R, Xu S, Lakshmana MK (2016) Transcription factor EB is selectively reduced in the nuclear fractions of Alzheimer’s and amyotrophic lateral sclerosis brains. Neurosci J 2016:4732837. https://doi.org/10.1155/2016/4732837
doi: 10.1155/2016/4732837
pubmed: 27433468
pmcid: 4940567
Cunningham KM, Maulding K, Ruan K, Senturk M, Grima JC, Sung H, Zuo Z, Song H, Gao J, Dubey S, Rothstein JD, Zhang K, Bellen HJ, Lloyd TE (2020) TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS. Elife 9. https://doi.org/10.7554/eLife.59419
Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131(3):596–610. https://doi.org/10.1016/j.cell.2007.08.036
doi: 10.1016/j.cell.2007.08.036
pubmed: 17981125
Mavlyutov TA, Yang H, Epstein ML, Ruoho AE, Yang J, Guo LW (2017) APEX2-enhanced electron microscopy distinguishes sigma-1 receptor localization in the nucleoplasmic reticulum. Oncotarget 8(31):51317–51330. https://doi.org/10.18632/oncotarget.17906
doi: 10.18632/oncotarget.17906
pubmed: 28881650
pmcid: 5584251
Eddings CR, Arbez N, Akimov S, Geva M, Hayden MR, Ross CA (2019) Pridopidine protects neurons from mutant-huntingtin toxicity via the sigma-1 receptor. Neurobiol Dis 129:118–129. https://doi.org/10.1016/j.nbd.2019.05.009
doi: 10.1016/j.nbd.2019.05.009
pubmed: 31108174
pmcid: 6996243
Estevez-Silva HM, Cuesto G, Romero N, Brito-Armas JM, Acevedo-Arozena A, Acebes A, Marcellino DJ (2022) Pridopidine promotes synaptogenesis and reduces spatial memory deficits in the Alzheimer’s disease APP/PS1 mouse model. Neurotherapeutics 19(5):1566–1587. https://doi.org/10.1007/s13311-022-01280-1
doi: 10.1007/s13311-022-01280-1
pubmed: 35917088
pmcid: 9606189
Francardo V, Bez F, Wieloch T, Nissbrandt H, Ruscher K, Cenci MA (2014) Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism. Brain 137(Pt 7):1998–2014. https://doi.org/10.1093/brain/awu107
doi: 10.1093/brain/awu107
pubmed: 24755275
Omi T, Tanimukai H, Kanayama D, Sakagami Y, Tagami S, Okochi M, Morihara T, Sato M, Yanagida K, Kitasyoji A, Hara H, Imaizumi K, Maurice T, Chevallier N, Marchal S, Takeda M, Kudo T (2014) Fluvoxamine alleviates ER stress via induction of sigma-1 receptor. Cell Death Dis 5(7):e1332. https://doi.org/10.1038/cddis.2014.301
doi: 10.1038/cddis.2014.301
pubmed: 25032855
pmcid: 4123092
Hashimoto K (2015) Activation of sigma-1 receptor chaperone in the treatment of neuropsychiatric diseases and its clinical implication. J Pharmacol Sci 127(1):6–9. https://doi.org/10.1016/j.jphs.2014.11.010
doi: 10.1016/j.jphs.2014.11.010
pubmed: 25704012
Kim WS, Fu Y, Dobson-Stone C, Hsiao JT, Shang K, Hallupp M, Schofield PR, Garner B, Karl T, Kwok JBJ (2018) Effect of fluvoxamine on amyloid-beta peptide generation and memory. J Alzheimers Dis 62(4):1777–1787. https://doi.org/10.3233/JAD-171001
doi: 10.3233/JAD-171001
pubmed: 29614681
Huang CP, Liu LC, Lu HL, Shyr CR (2023) Effects of hepatocyte growth factor on porcine mammary cell growth and senescence. Biomedicine (Taipei) 13(1):13–21. https://doi.org/10.37796/2211-8039.1392
doi: 10.37796/2211-8039.1392
pubmed: 37168728
Wang CH, Wu HC, Hsu CW, Chang YW, Ko CY, Hsu TI, Chuang JY, Tseng TH, Wang SM (2022) Inhibition of MZF1/c-MYC axis by cantharidin impairs cell proliferation in glioblastoma. Int J Mol Sci 23(23). https://doi.org/10.3390/ijms232314727
Wang SM, Hsu JC, Ko CY, Wu HE, Hsiao YW, Wang JM (2023) Astrocytic Cebpd regulates pentraxin 3 expression to promote fibrotic scar formation after spinal cord injury. Mol Neurobiol 60(4):2200–2208. https://doi.org/10.1007/s12035-023-03207-z
doi: 10.1007/s12035-023-03207-z
pubmed: 36633805
pmcid: 9984521
Hayashi T (2019) The sigma-1 receptor in cellular stress signaling. Front Neurosci 13:733. https://doi.org/10.3389/fnins.2019.00733
doi: 10.3389/fnins.2019.00733
pubmed: 31379486
pmcid: 6646578
Ahrman E, Gustavsson N, Hultschig C, Boelens WC, Emanuelsson CS (2007) Small heat shock proteins prevent aggregation of citrate synthase and bind to the N-terminal region which is absent in thermostable forms of citrate synthase. Extremophiles 11(5):659–666. https://doi.org/10.1007/s00792-007-0080-3
doi: 10.1007/s00792-007-0080-3
pubmed: 17486291
Lim KS, Wong RW (2018) Targeting nucleoporin POM121-importin beta axis in prostate cancer. Cell Chem Biol 25(9):1056–1058. https://doi.org/10.1016/j.chembiol.2018.09.003
doi: 10.1016/j.chembiol.2018.09.003
pubmed: 30241601
Li C, Wang X, Li X, Qiu K, Jiao F, Liu Y, Kong Q, Liu Y, Wu Y (2019) Proteasome inhibition activates autophagy-lysosome pathway associated with TFEB dephosphorylation and nuclear translocation. Front Cell Dev Biol 7:170. https://doi.org/10.3389/fcell.2019.00170
doi: 10.3389/fcell.2019.00170
pubmed: 31508418
pmcid: 6713995
Beckers J, Tharkeshwar AK, Van Damme P (2021) C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels. Autophagy 17(11):3306–3322. https://doi.org/10.1080/15548627.2021.1872189
doi: 10.1080/15548627.2021.1872189
pubmed: 33632058
pmcid: 8632097
Boivin M, Pfister V, Gaucherot A, Ruffenach F, Negroni L, Sellier C, Charlet-Berguerand N (2020) Reduced autophagy upon C9ORF72 loss synergizes with dipeptide repeat protein toxicity in G4C2 repeat expansion disorders. EMBO J 39(4):e100574. https://doi.org/10.15252/embj.2018100574
doi: 10.15252/embj.2018100574
pubmed: 31930538
pmcid: 7024836
Balendra R, Isaacs AM (2018) C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol 14(9):544–558. https://doi.org/10.1038/s41582-018-0047-2
doi: 10.1038/s41582-018-0047-2
pubmed: 30120348
pmcid: 6417666
Frottin F, Perez-Berlanga M, Hartl FU, Hipp MS (2021) Multiple pathways of toxicity induced by C9orf72 dipeptide repeat aggregates and G(4)C(2) RNA in a cellular model. Elife 10. https://doi.org/10.7554/eLife.62718
Prasanth MI, Malar DS, Tencomnao T, Brimson JM (2021) The emerging role of the sigma-1 receptor in autophagy: hand-in-hand targets for the treatment of Alzheimer’s. Expert Opin Ther Targets 25(5):401–414. https://doi.org/10.1080/14728222.2021.1939681
doi: 10.1080/14728222.2021.1939681
pubmed: 34110944
Brimson JM, Prasanth MI, Malar DS, Brimson S, Thitilertdecha P, Tencomnao T (2021) Drugs that offer the potential to reduce hospitalization and mortality from SARS-CoV-2 infection: the possible role of the sigma-1 receptor and autophagy. Expert Opin Ther Targets 25(6):435–449. https://doi.org/10.1080/14728222.2021.1952987
doi: 10.1080/14728222.2021.1952987
pubmed: 34236922
Wang SM, Goguadze N, Kimura Y, Yasui Y, Pan B, Wang TY, Nakamura Y, Lin YT, Hogan QH, Wilson KL, Su TP, Wu HE (2021) Genomic action of sigma-1 receptor chaperone relates to neuropathic pain. Mol Neurobiol 58(6):2523–2541. https://doi.org/10.1007/s12035-020-02276-8
doi: 10.1007/s12035-020-02276-8
pubmed: 33459966
pmcid: 8128747
Sukhatme VP, Reiersen AM, Vayttaden SJ, Sukhatme VV (2021) Fluvoxamine: a review of its mechanism of action and its role in COVID-19. Front Pharmacol 12:652688. https://doi.org/10.3389/fphar.2021.652688
doi: 10.3389/fphar.2021.652688
pubmed: 33959018
pmcid: 8094534
Brimson JM, Brimson S, Chomchoei C, Tencomnao T (2020) Using sigma-ligands as part of a multi-receptor approach to target diseases of the brain. Expert Opin Ther Targets 24(10):1009–1028. https://doi.org/10.1080/14728222.2020.1805435
doi: 10.1080/14728222.2020.1805435
pubmed: 32746649
Coyne AN, Zaepfel BL, Hayes L, Fitchman B, Salzberg Y, Luo EC, Bowen K, Trost H, Aigner S, Rigo F, Yeo GW, Harel A, Svendsen CN, Sareen D, Rothstein JD (2020) G(4)C(2) repeat RNA initiates a POM121-mediated reduction in specific nucleoporins in C9orf72 ALS/FTD. Neuron 107(6):1124–1140.e1111. https://doi.org/10.1016/j.neuron.2020.06.027
doi: 10.1016/j.neuron.2020.06.027
pubmed: 32673563
pmcid: 8077944
Cingolani G, Petosa C, Weis K, Muller CW (1999) Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399(6733):221–229. https://doi.org/10.1038/20367
doi: 10.1038/20367
pubmed: 10353244
Dickmanns A, Kehlenbach RH, Fahrenkrog B (2015) Nuclear pore complexes and nucleocytoplasmic transport: from structure to function to disease. Int Rev Cell Mol Biol 320:171–233. https://doi.org/10.1016/bs.ircmb.2015.07.010
doi: 10.1016/bs.ircmb.2015.07.010
pubmed: 26614874
Antonin W, Franz C, Haselmann U, Antony C, Mattaj IW (2005) The integral membrane nucleoporin pom121 functionally links nuclear pore complex assembly and nuclear envelope formation. Mol Cell 17(1):83–92. https://doi.org/10.1016/j.molcel.2004.12.010
doi: 10.1016/j.molcel.2004.12.010
pubmed: 15629719
Wente SR, Rout MP (2010) The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol 2(10):a000562. https://doi.org/10.1101/cshperspect.a000562
doi: 10.1101/cshperspect.a000562
pubmed: 20630994
pmcid: 2944363
Sahana TG, Chase KJ, Liu F, Lloyd TE, Rossoll W, Zhang K (2023) c-Jun N-terminal kinase promotes stress granule assembly and neurodegeneration in C9orf72-mediated ALS and FTD. J Neurosci 43(17):3186–3197. https://doi.org/10.1523/JNEUROSCI.1799-22.2023
doi: 10.1523/JNEUROSCI.1799-22.2023
pubmed: 37015810
pmcid: 10146492
Tanimukai H, Kudo T (2015) Fluvoxamine alleviates paclitaxel-induced neurotoxicity. Biochem Biophys Rep 4:202–206. https://doi.org/10.1016/j.bbrep.2015.09.014
doi: 10.1016/j.bbrep.2015.09.014
pubmed: 29124205
pmcid: 5668922
Xu W, Xu J (2018) C9orf72 dipeptide repeats cause selective neurodegeneration and cell-autonomous excitotoxicity in drosophila glutamatergic neurons. J Neurosci 38(35):7741–7752. https://doi.org/10.1523/JNEUROSCI.0908-18.2018
doi: 10.1523/JNEUROSCI.0908-18.2018
pubmed: 30037833
pmcid: 6705968
Ryan S, Rollinson S, Hobbs E, Pickering-Brown S (2022) C9orf72 dipeptides disrupt the nucleocytoplasmic transport machinery and cause TDP-43 mislocalisation to the cytoplasm. Sci Rep 12(1):4799. https://doi.org/10.1038/s41598-022-08724-w
doi: 10.1038/s41598-022-08724-w
pubmed: 35314728
pmcid: 8938440