Cancer-Associated Fibroblast-Secreted Exosomes Promote Gastric Cancer Cell Migration and Invasion via the IL-32/ESR1 Axis.

Cancer-associated fibroblast Exosome Gastric cancer IL32 Invasion Migration

Journal

Applied biochemistry and biotechnology
ISSN: 1559-0291
Titre abrégé: Appl Biochem Biotechnol
Pays: United States
ID NLM: 8208561

Informations de publication

Date de publication:
05 Jan 2024
Historique:
accepted: 07 11 2023
medline: 5 1 2024
pubmed: 5 1 2024
entrez: 5 1 2024
Statut: aheadofprint

Résumé

Exosomes secreted by cancer-associated fibroblasts (CAFs) play a critical part in cancer progression. This study aimed to explore the effects of CAF-exosomes on gastric cancer (GC) cell metastasis. AGS and HGC-27 cells were treated with exosomes and cell viability, migration, and invasion were evaluated using Cell-Counting Kit-8 and Transwell assays. Exosome-regulated mRNAs were explored using quantitative real-time PCR. The relationship between interleukin (IL)32 and estrogen receptor 1 (ESR1) was evaluated using co-immunoprecipitation and dual-luciferase reporter assays. The results of this study show that CAF-derived exosomes promote GC cell viability, migration, and invasion. Exosome treatment increased the levels of IL32, which interacted with ESR1 and negatively regulated ESR1 levels. Rescue experiments were conducted to demonstrate that CAF-exosomes promoted biological behaviors of GC cells by upregulating IL32 and downregulating ESR1 expression. In conclusion, CAF-derived exosomes promote GC cell viability, migration, and invasion by elevating the IL32/ESR1 axis, suggesting a novel strategy for metastatic GC treatment.

Identifiants

pubmed: 38180644
doi: 10.1007/s12010-023-04782-6
pii: 10.1007/s12010-023-04782-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Shaanxi Provincial Natural Science Foundation general project
ID : 2023-JC-YB-786

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Smyth, E. C., Nilsson, M., Grabsch, H. I., van Grieken, N. C., & Lordick, F. (2020). Gastric cancer. Lancet, 396(10251), 635–648. https://doi.org/10.1016/S0140-6736(20)31288-5
doi: 10.1016/S0140-6736(20)31288-5 pubmed: 32861308
Thrift, A. P., & El-Serag, H. B. (2020). Burden of gastric cancer. Clinical Gastroenterology and Hepatology, 18(3), 534–542. https://doi.org/10.1016/j.cgh.2019.07.045
doi: 10.1016/j.cgh.2019.07.045 pubmed: 31362118
Sexton, R. E., Al Hallak, M. N., Diab, M., & Azmi, A. S. (2020). Gastric cancer: A comprehensive review of current and future treatment strategies. Cancer and Metastasis Reviews, 39(4), 1179–1203. https://doi.org/10.1007/s10555-020-09925-3
doi: 10.1007/s10555-020-09925-3 pubmed: 32894370
Biffi, G., & Tuveson, D. A. (2021). Diversity and biology of cancer-associated fibroblasts. Physiological Reviews, 101(1), 147–176. https://doi.org/10.1152/physrev.00048.2019
doi: 10.1152/physrev.00048.2019 pubmed: 32466724
Ma, Z., Chen, M., Yang, X., Xu, B., Song, Z., Zhou, B., & Yang, T. (2018). The role of cancer-associated fibroblasts in tumorigenesis of gastric cancer. Current Pharmaceutical Design, 24(28), 3297–3302. https://doi.org/10.2174/1381612824666180601094056
doi: 10.2174/1381612824666180601094056 pubmed: 29852862
Chen, Y., McAndrews, K. M., & Kalluri, R. (2021). Clinical and therapeutic relevance of cancer-associated fibroblasts. Nature Reviews. Clinical Oncology, 18(12), 792–804. https://doi.org/10.1038/s41571-021-00546-5
doi: 10.1038/s41571-021-00546-5 pubmed: 34489603 pmcid: 8791784
Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367(6478), eaau6977. https://doi.org/10.1126/science.aau6977
doi: 10.1126/science.aau6977 pubmed: 32029601 pmcid: 7717626
Wortzel, I., Dror, S., Kenific, C. M., & Lyden, D. (2019). Exosome-mediated metastasis: Communication from a distance. Developmental Cell, 49(3), 347–360. https://doi.org/10.1016/j.devcel.2019.04.011
doi: 10.1016/j.devcel.2019.04.011 pubmed: 31063754
Zhang, L., & Yu, D. (2019). Exosomes in cancer development, metastasis, and immunity. Biochimica Et Biophysica Acta - Reviews on Cancer, 1871(2), 455–468. https://doi.org/10.1016/j.bbcan.2019.04.004
doi: 10.1016/j.bbcan.2019.04.004 pubmed: 31047959 pmcid: 6542596
Yang, X., Li, Y., Zou, L., & Zhu, Z. (2019). Role of exosomes in crosstalk between cancer-associated fibroblasts and cancer cells. Frontiers in Oncology, 9, 356. https://doi.org/10.3389/fonc.2019.00356
doi: 10.3389/fonc.2019.00356 pubmed: 31131261 pmcid: 6510008
Li, C., Teixeira, A. F., Zhu, H. J., & Ten Dijke, P. (2021). Cancer associated-fibroblast-derived exosomes in cancer progression. Molecular Cancer, 20(1), 154. https://doi.org/10.1186/s12943-021-01463-y
doi: 10.1186/s12943-021-01463-y pubmed: 34852849 pmcid: 8638446
Chen, B., Sang, Y., Song, X., Zhang, D., Wang, L., Zhao, W., Liang, Y., Zhang, N., & Yang, Q. (2021). Exosomal miR-500a-5p derived from cancer-associated fibroblasts promotes breast cancer cell proliferation and metastasis through targeting USP28. Theranostics, 11(8), 3932–3947. https://doi.org/10.7150/thno.53412
doi: 10.7150/thno.53412 pubmed: 33664871 pmcid: 7914354
Li, Y. Y., Tao, Y. W., Gao, S., Li, P., Zheng, J. M., Zhang, S. E., Liang, J., & Zhang, Y. (2018). Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p. eBioMedicine, 36, 209–220. https://doi.org/10.1016/j.ebiom.2018.09.006
doi: 10.1016/j.ebiom.2018.09.006 pubmed: 30243489 pmcid: 6197737
Yang, K., Zhang, F., Luo, B., & Qu, Z. (2022). CAFs-derived small extracellular vesicles circN4BP2L2 promotes proliferation and metastasis of colorectal cancer via miR-664b-3p/HMGB3 pathway. Cancer Biology & Therapy, 23(1), 404–416. https://doi.org/10.1080/15384047.2022.2072164
doi: 10.1080/15384047.2022.2072164
Zhang, H., Deng, T., Liu, R., Ning, T., Yang, H., Liu, D., Zhang, Q., Lin, D., Ge, S., Bai, M., Wang, X., Zhang, L., Li, H., Yang, Y., Ji, Z., Wang, H., Ying, G., & Ba, Y. (2020). CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Molecular Cancer, 19(1), 43. https://doi.org/10.1186/s12943-020-01168-8
doi: 10.1186/s12943-020-01168-8 pubmed: 32106859 pmcid: 7045485
Sun, L., Huang, C., Zhu, M., Guo, S., Gao, Q., Wang, Q., Chen, B., Li, R., Zhao, Y., Wang, M., Chen, Z., Shen, B., & Zhu, W. (2020). Gastric cancer mesenchymal stem cells regulate PD-L1-CTCF enhancing cancer stem cell-like properties and tumorigenesis. Theranostics, 10(26), 11950–11962. https://doi.org/10.7150/thno.49717
doi: 10.7150/thno.49717 pubmed: 33204322 pmcid: 7667687
Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Reviews Cancer, 3(5), 362–374. https://doi.org/10.1038/nrc1075
doi: 10.1038/nrc1075 pubmed: 12724734
Sun, H., Wang, X., Wang, X., Xu, M., & Sheng, W. (2022). The role of cancer-associated fibroblasts in tumorigenesis of gastric cancer. Cell Death and Disease, 13(10), 874. https://doi.org/10.1038/s41419-022-05320-8
doi: 10.1038/s41419-022-05320-8 pubmed: 36244987 pmcid: 9573863
Mao, X., Xu, J., Wang, W., Liang, C., Hua, J., Liu, J., Zhang, B., Meng, Q., Yu, X., & Shi, S. (2021). Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Molecular Cancer, 20(1), 131. https://doi.org/10.1186/s12943-021-01428-1
doi: 10.1186/s12943-021-01428-1 pubmed: 34635121 pmcid: 8504100
Seo, N., Akiyoshi, K., & Shiku, H. (2018). Exosome-mediated regulation of tumor immunology. Cancer Science, 109(10), 2998–3004. https://doi.org/10.1111/cas.13735
doi: 10.1111/cas.13735 pubmed: 29999574 pmcid: 6172045
Richards, K. E., Zeleniak, A. E., Fishel, M. L., Wu, J., Littlepage, L. E., & Hill, R. (2017). Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene, 36(13), 1770–1778. https://doi.org/10.1038/onc.2016.353
doi: 10.1038/onc.2016.353 pubmed: 27669441
Ren, J., Ding, L., Zhang, D., Shi, G., Xu, Q., Shen, S., Wang, Y., Wang, T., & Hou, Y. (2018). Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics, 8(14), 3932–3948. https://doi.org/10.7150/thno.25541
doi: 10.7150/thno.25541 pubmed: 30083271 pmcid: 6071523
Goulet, C. R., Champagne, A., Bernard, G., Vandal, D., Chabaud, S., Pouliot, F., & Bolduc, S. (2019). Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling. BMC Cancer, 19(1), 137. https://doi.org/10.1186/s12885-019-5353-6
doi: 10.1186/s12885-019-5353-6 pubmed: 30744595 pmcid: 6371428
Liu, T., Han, C., Fang, P., Ma, Z., Wang, X., Chen, H., Wang, S., Meng, F., Wang, C., Zhang, E., Dong, G., Zhu, H., Yin, W., Wang, J., Zuo, X., Qiu, M., Wang, J., Qian, X., Shen, H., … Yin, R. (2022). Cancer-associated fibroblast-specific lncRNA LINC01614 enhances glutamine uptake in lung adenocarcinoma. Journal of Hematology & Oncology, 15(1), 141. https://doi.org/10.1186/s13045-022-01359-4
doi: 10.1186/s13045-022-01359-4
Wang, Y., Li, T., Yang, L., Zhang, X., Wang, X., Su, X., Ji, C., & Wang, Z. (2022). Cancer-associated fibroblast-released extracellular vesicles carrying miR-199a-5p induces the progression of​ gastric cancer through regulation of FKBP5-mediated AKT1/mTORC1 signaling pathway. Cell Cycle, 21(24), 2590–2601. https://doi.org/10.1080/15384101.2022.2105092
doi: 10.1080/15384101.2022.2105092 pubmed: 36005478 pmcid: 9704384
Shi, H., Huang, S., Qin, M., Xue, X., Guo, X., Jiang, L., Hong, H., Fang, J., & Gao, L. (2021). Exosomal circ_0088300 derived from cancer-associated fibroblasts acts as a miR-1305 sponge and promotes gastric carcinoma cell tumorigenesis. Frontiers in Cell and Developmental Biology, 9, 676319. https://doi.org/10.3389/fcell.2021.676319
doi: 10.3389/fcell.2021.676319 pubmed: 34124064 pmcid: 8188357
Hong, J. T., Son, D. J., Lee, C. K., Yoon, D. Y., Lee, D. H., & Park, M. H. (2017). Interleukin 32, inflammation and cancer. Pharmacology & Therapeutics, 174, 127–137. https://doi.org/10.1016/j.pharmthera.2017.02.025
doi: 10.1016/j.pharmthera.2017.02.025
Han, S., & Yang, Y. (2019). Interleukin-32: Frenemy in cancer? BMB Reports, 52(3), 165–174. https://doi.org/10.5483/BMBRep.2019.52.3.019
doi: 10.5483/BMBRep.2019.52.3.019 pubmed: 30638183 pmcid: 6476484
Sloot, Y. J. E., Smit, J. W., Joosten, L. A. B., & Netea-Maier, R. T. (2018). Insights into the role of IL-32 in cancer. Seminars in Immunology, 38, 24–32. https://doi.org/10.1016/j.smim.2018.03.004
doi: 10.1016/j.smim.2018.03.004 pubmed: 29747940
Paz, H., Tsoi, J., Kalbasi, A., Grasso, C. S., McBride, W. H., Schaue, D., Butterfield, L. H., Maurer, D. M., Ribas, A., Graeber, T. G., & Economou, J. S. (2019). Interleukin 32 expression in human melanoma. Journal of Translational Medicine, 17(1), 113. https://doi.org/10.1186/s12967-019-1862-y
doi: 10.1186/s12967-019-1862-y pubmed: 30953519 pmcid: 6449995
Wu, K., Zeng, J., Shi, X., Xie, J., Li, Y., Zheng, H., Peng, G., Zhu, G., Tang, D., & Wu, S. (2022). Targeting TIGIT inhibits bladder cancer metastasis through suppressing IL-32. Frontiers in Pharmacology, 12, 801493. https://doi.org/10.3389/fphar.2021.801493
doi: 10.3389/fphar.2021.801493 pubmed: 35069212 pmcid: 8766971
Sun, Y., Qian, Y., Chen, C., Wang, H., Zhou, X., Zhai, W., Qiu, L., Zhou, X., Ning, H., Zhao, Y., Shi, C., Han, L., Qi, Y., Wu, Y., & Gao, Y. (2022). Extracellular vesicle IL-32 promotes the M2 macrophage polarization and metastasis of esophageal squamous cell carcinoma via FAK/STAT3 pathway. Journal of Experimental & Clinical Cancer Research : Cr, 41(1), 145. https://doi.org/10.1186/s13046-022-02348-8
doi: 10.1186/s13046-022-02348-8 pmcid: 9013041
Tsai, C. Y., Wang, C. S., Tsai, M. M., Chi, H. C., Cheng, W. L., Tseng, Y. H., Chen, C. Y., Lin, C. D., Wu, J. I., Wang, L. H., & Lin, K. H. (2014). Interleukin-32 increases human gastric cancer cell invasion associated with tumor progression and metastasis. Clinical Cancer Research, 20(9), 2276–2288. https://doi.org/10.1158/1078-0432.CCR-13-1221
doi: 10.1158/1078-0432.CCR-13-1221 pubmed: 24602839
Wen, S., Hou, Y., Fu, L., Xi, L., Yang, D., Zhao, M., Qin, Y., Sun, K., Teng, Y., & Liu, M. (2019). Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signalling. Cancer Letters, 442, 320–332. https://doi.org/10.1016/j.canlet.2018.10.015
doi: 10.1016/j.canlet.2018.10.015 pubmed: 30391782
Lee, M. Y., Kim, S. H., Oh, Y. S., Heo, S. H., Kim, K. H., Chae, H. D., Kim, C. H., & Kang, B. M. (2018). Role of interleukin-32 in the pathogenesis of endometriosis: In vitro, human and transgenic mouse data. Human Reproduction, 33(5), 807–816. https://doi.org/10.1093/humrep/dey055
doi: 10.1093/humrep/dey055 pubmed: 29562285
Ryu, W. S., Kim, J. H., Jang, Y. J., Park, S. S., Um, J. W., Park, S. H., Kim, S. J., Mok, Y. J., & Kim, C. S. (2012). Expression of estrogen receptors in gastric cancer and their clinical significance. Journal of Surgical Oncology, 106(4), 456–461. https://doi.org/10.1002/jso.23097
doi: 10.1002/jso.23097 pubmed: 22422271
Carausu, M., Bidard, F. C., Callens, C., Melaabi, S., Jeannot, E., Pierga, J. Y., & Cabel, L. (2019). ESR1 mutations: A new biomarker in breast cancer. Expert Review of Molecular Diagnostics, 19(7), 599–611. https://doi.org/10.1080/14737159.2019.1631799
doi: 10.1080/14737159.2019.1631799 pubmed: 31188645
Wang, Y. M., Liu, Z. W., Guo, J. B., Wang, X. F., Zhao, X. X., & Zheng, X. (2013). ESR1 gene polymorphisms and prostate cancer risk: A HuGE review and meta-analysis. PLoS One, 8(6), e66999. https://doi.org/10.1371/journal.pone.0066999
doi: 10.1371/journal.pone.0066999 pubmed: 23805288 pmcid: 3689664
Gao, S., Gang, J., Yu, M., Xin, G., & Tan, H. (2021). Computational analysis for identification of early diagnostic biomarkers and prognostic biomarkers of liver cancer based on GEO and TCGA databases and studies on pathways and biological functions affecting the survival time of liver cancer. BMC Cancer, 21(1), 791. https://doi.org/10.1186/s12885-021-08520-1
doi: 10.1186/s12885-021-08520-1 pubmed: 34238253 pmcid: 8268589
Tu, Y., Wu, Q., He, J., Xu, J., Yu, S., Wang, Q., Cheng, Y., Yang, Q., Xu, S., & Cao, Y. (2021). Exploring the potential molecular mechanism of Scutellaria baicalensis Georgi in the treatment of gastric cancer based on network pharmacological analysis and molecular docking technology. Frontiers in Pharmacology, 12, 697704. https://doi.org/10.3389/fphar.2021.697704
doi: 10.3389/fphar.2021.697704 pubmed: 34421596 pmcid: 8378178
Zhou, J., Teng, R., Xu, C., Wang, Q., Guo, J., Xu, C., Li, Z., Xie, S., Shen, J., & Wang, L. (2013). Overexpression of ERα inhibits proliferation and invasion of MKN28 gastric cancer cells by suppressing β-catenin. Oncology Reports, 30(4), 1622–1630. https://doi.org/10.3892/or.2013.2610
doi: 10.3892/or.2013.2610 pubmed: 23843035
Wang, Y., Song, J., Li, Y., Lin, C., Chen, Y., Zhang, X., & Yu, H. (2023). Melatonin inhibited the progression of gastric cancer induced by Bisphenol S via regulating the estrogen receptor 1. Ecotoxicology and Environmental Safety, 259, 115054. https://doi.org/10.1016/j.ecoenv.2023.115054
doi: 10.1016/j.ecoenv.2023.115054 pubmed: 37224786

Auteurs

Lifeng Shang (L)

Department of Gastrointestinal Surgery, Xi'an Daxing Hospital, Yan'an University, Xi'an City, Shaanxi Province, 710016, China.

Xinli Chen (X)

Department of Gastrointestinal Surgery, Xi'an Daxing Hospital, Yan'an University, Xi'an City, Shaanxi Province, 710016, China.

Tianyu Zhu (T)

Department of Gastrointestinal Surgery, Xi'an Daxing Hospital, Yan'an University, Xi'an City, Shaanxi Province, 710016, China.

Shujing Chong (S)

Department of Gastrointestinal Surgery, Xi'an Daxing Hospital, Yan'an University, Xi'an City, Shaanxi Province, 710016, China.

Haiwang Liu (H)

Department of Gastrointestinal Surgery, Xi'an Daxing Hospital, Yan'an University, Xi'an City, Shaanxi Province, 710016, China.

Wei Huang (W)

Department of Gastrointestinal Surgery, Xi'an Daxing Hospital, Yan'an University, Xi'an City, Shaanxi Province, 710016, China.

Weibo Fu (W)

Department of Gastrointestinal Surgery, Xi'an Daxing Hospital, Yan'an University, Xi'an City, Shaanxi Province, 710016, China.

Hao She (H)

Department of Gastrointestinal Surgery, Xi'an Daxing Hospital, Yan'an University, Xi'an City, Shaanxi Province, 710016, China.

Xin Shen (X)

Department of Gastrointestinal Surgery, Xi'an Daxing Hospital, Yan'an University, Xi'an City, Shaanxi Province, 710016, China. buaijiangshang@163.com.

Classifications MeSH