Cancer-Associated Fibroblast-Secreted Exosomes Promote Gastric Cancer Cell Migration and Invasion via the IL-32/ESR1 Axis.
Cancer-associated fibroblast
Exosome
Gastric cancer
IL32
Invasion
Migration
Journal
Applied biochemistry and biotechnology
ISSN: 1559-0291
Titre abrégé: Appl Biochem Biotechnol
Pays: United States
ID NLM: 8208561
Informations de publication
Date de publication:
05 Jan 2024
05 Jan 2024
Historique:
accepted:
07
11
2023
medline:
5
1
2024
pubmed:
5
1
2024
entrez:
5
1
2024
Statut:
aheadofprint
Résumé
Exosomes secreted by cancer-associated fibroblasts (CAFs) play a critical part in cancer progression. This study aimed to explore the effects of CAF-exosomes on gastric cancer (GC) cell metastasis. AGS and HGC-27 cells were treated with exosomes and cell viability, migration, and invasion were evaluated using Cell-Counting Kit-8 and Transwell assays. Exosome-regulated mRNAs were explored using quantitative real-time PCR. The relationship between interleukin (IL)32 and estrogen receptor 1 (ESR1) was evaluated using co-immunoprecipitation and dual-luciferase reporter assays. The results of this study show that CAF-derived exosomes promote GC cell viability, migration, and invasion. Exosome treatment increased the levels of IL32, which interacted with ESR1 and negatively regulated ESR1 levels. Rescue experiments were conducted to demonstrate that CAF-exosomes promoted biological behaviors of GC cells by upregulating IL32 and downregulating ESR1 expression. In conclusion, CAF-derived exosomes promote GC cell viability, migration, and invasion by elevating the IL32/ESR1 axis, suggesting a novel strategy for metastatic GC treatment.
Identifiants
pubmed: 38180644
doi: 10.1007/s12010-023-04782-6
pii: 10.1007/s12010-023-04782-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Shaanxi Provincial Natural Science Foundation general project
ID : 2023-JC-YB-786
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Smyth, E. C., Nilsson, M., Grabsch, H. I., van Grieken, N. C., & Lordick, F. (2020). Gastric cancer. Lancet, 396(10251), 635–648. https://doi.org/10.1016/S0140-6736(20)31288-5
doi: 10.1016/S0140-6736(20)31288-5
pubmed: 32861308
Thrift, A. P., & El-Serag, H. B. (2020). Burden of gastric cancer. Clinical Gastroenterology and Hepatology, 18(3), 534–542. https://doi.org/10.1016/j.cgh.2019.07.045
doi: 10.1016/j.cgh.2019.07.045
pubmed: 31362118
Sexton, R. E., Al Hallak, M. N., Diab, M., & Azmi, A. S. (2020). Gastric cancer: A comprehensive review of current and future treatment strategies. Cancer and Metastasis Reviews, 39(4), 1179–1203. https://doi.org/10.1007/s10555-020-09925-3
doi: 10.1007/s10555-020-09925-3
pubmed: 32894370
Biffi, G., & Tuveson, D. A. (2021). Diversity and biology of cancer-associated fibroblasts. Physiological Reviews, 101(1), 147–176. https://doi.org/10.1152/physrev.00048.2019
doi: 10.1152/physrev.00048.2019
pubmed: 32466724
Ma, Z., Chen, M., Yang, X., Xu, B., Song, Z., Zhou, B., & Yang, T. (2018). The role of cancer-associated fibroblasts in tumorigenesis of gastric cancer. Current Pharmaceutical Design, 24(28), 3297–3302. https://doi.org/10.2174/1381612824666180601094056
doi: 10.2174/1381612824666180601094056
pubmed: 29852862
Chen, Y., McAndrews, K. M., & Kalluri, R. (2021). Clinical and therapeutic relevance of cancer-associated fibroblasts. Nature Reviews. Clinical Oncology, 18(12), 792–804. https://doi.org/10.1038/s41571-021-00546-5
doi: 10.1038/s41571-021-00546-5
pubmed: 34489603
pmcid: 8791784
Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367(6478), eaau6977. https://doi.org/10.1126/science.aau6977
doi: 10.1126/science.aau6977
pubmed: 32029601
pmcid: 7717626
Wortzel, I., Dror, S., Kenific, C. M., & Lyden, D. (2019). Exosome-mediated metastasis: Communication from a distance. Developmental Cell, 49(3), 347–360. https://doi.org/10.1016/j.devcel.2019.04.011
doi: 10.1016/j.devcel.2019.04.011
pubmed: 31063754
Zhang, L., & Yu, D. (2019). Exosomes in cancer development, metastasis, and immunity. Biochimica Et Biophysica Acta - Reviews on Cancer, 1871(2), 455–468. https://doi.org/10.1016/j.bbcan.2019.04.004
doi: 10.1016/j.bbcan.2019.04.004
pubmed: 31047959
pmcid: 6542596
Yang, X., Li, Y., Zou, L., & Zhu, Z. (2019). Role of exosomes in crosstalk between cancer-associated fibroblasts and cancer cells. Frontiers in Oncology, 9, 356. https://doi.org/10.3389/fonc.2019.00356
doi: 10.3389/fonc.2019.00356
pubmed: 31131261
pmcid: 6510008
Li, C., Teixeira, A. F., Zhu, H. J., & Ten Dijke, P. (2021). Cancer associated-fibroblast-derived exosomes in cancer progression. Molecular Cancer, 20(1), 154. https://doi.org/10.1186/s12943-021-01463-y
doi: 10.1186/s12943-021-01463-y
pubmed: 34852849
pmcid: 8638446
Chen, B., Sang, Y., Song, X., Zhang, D., Wang, L., Zhao, W., Liang, Y., Zhang, N., & Yang, Q. (2021). Exosomal miR-500a-5p derived from cancer-associated fibroblasts promotes breast cancer cell proliferation and metastasis through targeting USP28. Theranostics, 11(8), 3932–3947. https://doi.org/10.7150/thno.53412
doi: 10.7150/thno.53412
pubmed: 33664871
pmcid: 7914354
Li, Y. Y., Tao, Y. W., Gao, S., Li, P., Zheng, J. M., Zhang, S. E., Liang, J., & Zhang, Y. (2018). Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p. eBioMedicine, 36, 209–220. https://doi.org/10.1016/j.ebiom.2018.09.006
doi: 10.1016/j.ebiom.2018.09.006
pubmed: 30243489
pmcid: 6197737
Yang, K., Zhang, F., Luo, B., & Qu, Z. (2022). CAFs-derived small extracellular vesicles circN4BP2L2 promotes proliferation and metastasis of colorectal cancer via miR-664b-3p/HMGB3 pathway. Cancer Biology & Therapy, 23(1), 404–416. https://doi.org/10.1080/15384047.2022.2072164
doi: 10.1080/15384047.2022.2072164
Zhang, H., Deng, T., Liu, R., Ning, T., Yang, H., Liu, D., Zhang, Q., Lin, D., Ge, S., Bai, M., Wang, X., Zhang, L., Li, H., Yang, Y., Ji, Z., Wang, H., Ying, G., & Ba, Y. (2020). CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Molecular Cancer, 19(1), 43. https://doi.org/10.1186/s12943-020-01168-8
doi: 10.1186/s12943-020-01168-8
pubmed: 32106859
pmcid: 7045485
Sun, L., Huang, C., Zhu, M., Guo, S., Gao, Q., Wang, Q., Chen, B., Li, R., Zhao, Y., Wang, M., Chen, Z., Shen, B., & Zhu, W. (2020). Gastric cancer mesenchymal stem cells regulate PD-L1-CTCF enhancing cancer stem cell-like properties and tumorigenesis. Theranostics, 10(26), 11950–11962. https://doi.org/10.7150/thno.49717
doi: 10.7150/thno.49717
pubmed: 33204322
pmcid: 7667687
Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Reviews Cancer, 3(5), 362–374. https://doi.org/10.1038/nrc1075
doi: 10.1038/nrc1075
pubmed: 12724734
Sun, H., Wang, X., Wang, X., Xu, M., & Sheng, W. (2022). The role of cancer-associated fibroblasts in tumorigenesis of gastric cancer. Cell Death and Disease, 13(10), 874. https://doi.org/10.1038/s41419-022-05320-8
doi: 10.1038/s41419-022-05320-8
pubmed: 36244987
pmcid: 9573863
Mao, X., Xu, J., Wang, W., Liang, C., Hua, J., Liu, J., Zhang, B., Meng, Q., Yu, X., & Shi, S. (2021). Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Molecular Cancer, 20(1), 131. https://doi.org/10.1186/s12943-021-01428-1
doi: 10.1186/s12943-021-01428-1
pubmed: 34635121
pmcid: 8504100
Seo, N., Akiyoshi, K., & Shiku, H. (2018). Exosome-mediated regulation of tumor immunology. Cancer Science, 109(10), 2998–3004. https://doi.org/10.1111/cas.13735
doi: 10.1111/cas.13735
pubmed: 29999574
pmcid: 6172045
Richards, K. E., Zeleniak, A. E., Fishel, M. L., Wu, J., Littlepage, L. E., & Hill, R. (2017). Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene, 36(13), 1770–1778. https://doi.org/10.1038/onc.2016.353
doi: 10.1038/onc.2016.353
pubmed: 27669441
Ren, J., Ding, L., Zhang, D., Shi, G., Xu, Q., Shen, S., Wang, Y., Wang, T., & Hou, Y. (2018). Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics, 8(14), 3932–3948. https://doi.org/10.7150/thno.25541
doi: 10.7150/thno.25541
pubmed: 30083271
pmcid: 6071523
Goulet, C. R., Champagne, A., Bernard, G., Vandal, D., Chabaud, S., Pouliot, F., & Bolduc, S. (2019). Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling. BMC Cancer, 19(1), 137. https://doi.org/10.1186/s12885-019-5353-6
doi: 10.1186/s12885-019-5353-6
pubmed: 30744595
pmcid: 6371428
Liu, T., Han, C., Fang, P., Ma, Z., Wang, X., Chen, H., Wang, S., Meng, F., Wang, C., Zhang, E., Dong, G., Zhu, H., Yin, W., Wang, J., Zuo, X., Qiu, M., Wang, J., Qian, X., Shen, H., … Yin, R. (2022). Cancer-associated fibroblast-specific lncRNA LINC01614 enhances glutamine uptake in lung adenocarcinoma. Journal of Hematology & Oncology, 15(1), 141. https://doi.org/10.1186/s13045-022-01359-4
doi: 10.1186/s13045-022-01359-4
Wang, Y., Li, T., Yang, L., Zhang, X., Wang, X., Su, X., Ji, C., & Wang, Z. (2022). Cancer-associated fibroblast-released extracellular vesicles carrying miR-199a-5p induces the progression of gastric cancer through regulation of FKBP5-mediated AKT1/mTORC1 signaling pathway. Cell Cycle, 21(24), 2590–2601. https://doi.org/10.1080/15384101.2022.2105092
doi: 10.1080/15384101.2022.2105092
pubmed: 36005478
pmcid: 9704384
Shi, H., Huang, S., Qin, M., Xue, X., Guo, X., Jiang, L., Hong, H., Fang, J., & Gao, L. (2021). Exosomal circ_0088300 derived from cancer-associated fibroblasts acts as a miR-1305 sponge and promotes gastric carcinoma cell tumorigenesis. Frontiers in Cell and Developmental Biology, 9, 676319. https://doi.org/10.3389/fcell.2021.676319
doi: 10.3389/fcell.2021.676319
pubmed: 34124064
pmcid: 8188357
Hong, J. T., Son, D. J., Lee, C. K., Yoon, D. Y., Lee, D. H., & Park, M. H. (2017). Interleukin 32, inflammation and cancer. Pharmacology & Therapeutics, 174, 127–137. https://doi.org/10.1016/j.pharmthera.2017.02.025
doi: 10.1016/j.pharmthera.2017.02.025
Han, S., & Yang, Y. (2019). Interleukin-32: Frenemy in cancer? BMB Reports, 52(3), 165–174. https://doi.org/10.5483/BMBRep.2019.52.3.019
doi: 10.5483/BMBRep.2019.52.3.019
pubmed: 30638183
pmcid: 6476484
Sloot, Y. J. E., Smit, J. W., Joosten, L. A. B., & Netea-Maier, R. T. (2018). Insights into the role of IL-32 in cancer. Seminars in Immunology, 38, 24–32. https://doi.org/10.1016/j.smim.2018.03.004
doi: 10.1016/j.smim.2018.03.004
pubmed: 29747940
Paz, H., Tsoi, J., Kalbasi, A., Grasso, C. S., McBride, W. H., Schaue, D., Butterfield, L. H., Maurer, D. M., Ribas, A., Graeber, T. G., & Economou, J. S. (2019). Interleukin 32 expression in human melanoma. Journal of Translational Medicine, 17(1), 113. https://doi.org/10.1186/s12967-019-1862-y
doi: 10.1186/s12967-019-1862-y
pubmed: 30953519
pmcid: 6449995
Wu, K., Zeng, J., Shi, X., Xie, J., Li, Y., Zheng, H., Peng, G., Zhu, G., Tang, D., & Wu, S. (2022). Targeting TIGIT inhibits bladder cancer metastasis through suppressing IL-32. Frontiers in Pharmacology, 12, 801493. https://doi.org/10.3389/fphar.2021.801493
doi: 10.3389/fphar.2021.801493
pubmed: 35069212
pmcid: 8766971
Sun, Y., Qian, Y., Chen, C., Wang, H., Zhou, X., Zhai, W., Qiu, L., Zhou, X., Ning, H., Zhao, Y., Shi, C., Han, L., Qi, Y., Wu, Y., & Gao, Y. (2022). Extracellular vesicle IL-32 promotes the M2 macrophage polarization and metastasis of esophageal squamous cell carcinoma via FAK/STAT3 pathway. Journal of Experimental & Clinical Cancer Research : Cr, 41(1), 145. https://doi.org/10.1186/s13046-022-02348-8
doi: 10.1186/s13046-022-02348-8
pmcid: 9013041
Tsai, C. Y., Wang, C. S., Tsai, M. M., Chi, H. C., Cheng, W. L., Tseng, Y. H., Chen, C. Y., Lin, C. D., Wu, J. I., Wang, L. H., & Lin, K. H. (2014). Interleukin-32 increases human gastric cancer cell invasion associated with tumor progression and metastasis. Clinical Cancer Research, 20(9), 2276–2288. https://doi.org/10.1158/1078-0432.CCR-13-1221
doi: 10.1158/1078-0432.CCR-13-1221
pubmed: 24602839
Wen, S., Hou, Y., Fu, L., Xi, L., Yang, D., Zhao, M., Qin, Y., Sun, K., Teng, Y., & Liu, M. (2019). Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signalling. Cancer Letters, 442, 320–332. https://doi.org/10.1016/j.canlet.2018.10.015
doi: 10.1016/j.canlet.2018.10.015
pubmed: 30391782
Lee, M. Y., Kim, S. H., Oh, Y. S., Heo, S. H., Kim, K. H., Chae, H. D., Kim, C. H., & Kang, B. M. (2018). Role of interleukin-32 in the pathogenesis of endometriosis: In vitro, human and transgenic mouse data. Human Reproduction, 33(5), 807–816. https://doi.org/10.1093/humrep/dey055
doi: 10.1093/humrep/dey055
pubmed: 29562285
Ryu, W. S., Kim, J. H., Jang, Y. J., Park, S. S., Um, J. W., Park, S. H., Kim, S. J., Mok, Y. J., & Kim, C. S. (2012). Expression of estrogen receptors in gastric cancer and their clinical significance. Journal of Surgical Oncology, 106(4), 456–461. https://doi.org/10.1002/jso.23097
doi: 10.1002/jso.23097
pubmed: 22422271
Carausu, M., Bidard, F. C., Callens, C., Melaabi, S., Jeannot, E., Pierga, J. Y., & Cabel, L. (2019). ESR1 mutations: A new biomarker in breast cancer. Expert Review of Molecular Diagnostics, 19(7), 599–611. https://doi.org/10.1080/14737159.2019.1631799
doi: 10.1080/14737159.2019.1631799
pubmed: 31188645
Wang, Y. M., Liu, Z. W., Guo, J. B., Wang, X. F., Zhao, X. X., & Zheng, X. (2013). ESR1 gene polymorphisms and prostate cancer risk: A HuGE review and meta-analysis. PLoS One, 8(6), e66999. https://doi.org/10.1371/journal.pone.0066999
doi: 10.1371/journal.pone.0066999
pubmed: 23805288
pmcid: 3689664
Gao, S., Gang, J., Yu, M., Xin, G., & Tan, H. (2021). Computational analysis for identification of early diagnostic biomarkers and prognostic biomarkers of liver cancer based on GEO and TCGA databases and studies on pathways and biological functions affecting the survival time of liver cancer. BMC Cancer, 21(1), 791. https://doi.org/10.1186/s12885-021-08520-1
doi: 10.1186/s12885-021-08520-1
pubmed: 34238253
pmcid: 8268589
Tu, Y., Wu, Q., He, J., Xu, J., Yu, S., Wang, Q., Cheng, Y., Yang, Q., Xu, S., & Cao, Y. (2021). Exploring the potential molecular mechanism of Scutellaria baicalensis Georgi in the treatment of gastric cancer based on network pharmacological analysis and molecular docking technology. Frontiers in Pharmacology, 12, 697704. https://doi.org/10.3389/fphar.2021.697704
doi: 10.3389/fphar.2021.697704
pubmed: 34421596
pmcid: 8378178
Zhou, J., Teng, R., Xu, C., Wang, Q., Guo, J., Xu, C., Li, Z., Xie, S., Shen, J., & Wang, L. (2013). Overexpression of ERα inhibits proliferation and invasion of MKN28 gastric cancer cells by suppressing β-catenin. Oncology Reports, 30(4), 1622–1630. https://doi.org/10.3892/or.2013.2610
doi: 10.3892/or.2013.2610
pubmed: 23843035
Wang, Y., Song, J., Li, Y., Lin, C., Chen, Y., Zhang, X., & Yu, H. (2023). Melatonin inhibited the progression of gastric cancer induced by Bisphenol S via regulating the estrogen receptor 1. Ecotoxicology and Environmental Safety, 259, 115054. https://doi.org/10.1016/j.ecoenv.2023.115054
doi: 10.1016/j.ecoenv.2023.115054
pubmed: 37224786