MRPL21 promotes HCC proliferation through TP53 mutation-induced apoptotic resistance.

Apoptosis Hepatocellular carcinoma (HCC) MRPL21 Nutlin-3 Reactive oxygen species (ROS) TP53 mutation

Journal

Tissue & cell
ISSN: 1532-3072
Titre abrégé: Tissue Cell
Pays: Scotland
ID NLM: 0214745

Informations de publication

Date de publication:
03 Jan 2024
Historique:
received: 28 08 2023
revised: 29 12 2023
accepted: 30 12 2023
medline: 6 1 2024
pubmed: 6 1 2024
entrez: 5 1 2024
Statut: aheadofprint

Résumé

The specific mechanisms underlying the inhibition of hepatocellular carcinoma (HCC) proliferation and metastasis by mitochondrial apoptosis are not yet fully understood. However, it plays a vital role in suppressing HCC's ability to proliferate and spread. The involvement of MRPL21, a member within the family of mitochondrial ribosomal proteins (MRPs), is well-documented in both cellular apoptosis and energy metabolism. This study aims to explore and unravel the underlying mechanisms through which MRPL21 contributes to mitochondrial apoptosis and resistance against apoptosis in HCC. To evaluate the level of MRPL21 expression at the gene and protein expression levels, analysis was performed on human liver samples and blood using techniques for quantification. A knockdown plasmid targeting MRPL21 was constructed to investigate its impact on the growth and apoptosis of hepatocellular carcinoma (HCC). To evaluate the impact of MRPL21 knockdown on hepatocellular carcinoma (HCC) cell proliferation and apoptosis, various assays were performed including CCK-8 assays, flow cytometry analysis, detection of reactive oxygen species (ROS), and assessment of mitochondrial membrane potential (MMP). Furthermore, the role of MRPL21 in TP53 mutation was examined using Nutlin-3. In HCC tissues and blood samples, an upregulation of MRPL21 expression was observed when compared to samples obtained from healthy individuals, and it is correlated with a poor prognosis for HCC. Silencing MRPL21 can effectively suppress Hep3B and HCCLM3 cells proliferation by modulating the mitochondrial membrane potential, it triggers the generation of reactive oxygen species (ROS), thereby leading to G0/G1 cell cycle arrest and initiation of early apoptosis. Furthermore, by inhibiting P53 activity, Nutlin-3 treatment can enhance MRPL21-deficiency-mediated apoptosis in Hep3B and HCCLM3 cells. Through its influence on TP53 mutation, MRPL21 promotes HCC proliferation and progression while conferring resistance to apoptosis. These findings suggest that MRPL21 holds promise as a valuable biomarker for the treatment of HCC.

Sections du résumé

BACKGROUND AND AIMS OBJECTIVE
The specific mechanisms underlying the inhibition of hepatocellular carcinoma (HCC) proliferation and metastasis by mitochondrial apoptosis are not yet fully understood. However, it plays a vital role in suppressing HCC's ability to proliferate and spread. The involvement of MRPL21, a member within the family of mitochondrial ribosomal proteins (MRPs), is well-documented in both cellular apoptosis and energy metabolism. This study aims to explore and unravel the underlying mechanisms through which MRPL21 contributes to mitochondrial apoptosis and resistance against apoptosis in HCC.
METHODS METHODS
To evaluate the level of MRPL21 expression at the gene and protein expression levels, analysis was performed on human liver samples and blood using techniques for quantification. A knockdown plasmid targeting MRPL21 was constructed to investigate its impact on the growth and apoptosis of hepatocellular carcinoma (HCC). To evaluate the impact of MRPL21 knockdown on hepatocellular carcinoma (HCC) cell proliferation and apoptosis, various assays were performed including CCK-8 assays, flow cytometry analysis, detection of reactive oxygen species (ROS), and assessment of mitochondrial membrane potential (MMP). Furthermore, the role of MRPL21 in TP53 mutation was examined using Nutlin-3.
RESULTS RESULTS
In HCC tissues and blood samples, an upregulation of MRPL21 expression was observed when compared to samples obtained from healthy individuals, and it is correlated with a poor prognosis for HCC. Silencing MRPL21 can effectively suppress Hep3B and HCCLM3 cells proliferation by modulating the mitochondrial membrane potential, it triggers the generation of reactive oxygen species (ROS), thereby leading to G0/G1 cell cycle arrest and initiation of early apoptosis. Furthermore, by inhibiting P53 activity, Nutlin-3 treatment can enhance MRPL21-deficiency-mediated apoptosis in Hep3B and HCCLM3 cells.
CONCLUSION CONCLUSIONS
Through its influence on TP53 mutation, MRPL21 promotes HCC proliferation and progression while conferring resistance to apoptosis. These findings suggest that MRPL21 holds promise as a valuable biomarker for the treatment of HCC.

Identifiants

pubmed: 38181584
pii: S0040-8166(23)00286-0
doi: 10.1016/j.tice.2023.102298
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

102298

Informations de copyright

Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.

Déclaration de conflit d'intérêts

Conflict of interest None.

Auteurs

Tao Ma (T)

Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China.

Ya-Bin Huang (YB)

Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.

Jing Chen (J)

Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China.

Lu Zhang (L)

Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China.

Yan-Hua Liu (YH)

Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China. Electronic address: tutuyanhua@163.com.

Cui-Hua Lu (CH)

Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China. Electronic address: lch670608@sina.com.

Classifications MeSH