Tail-tape-fused virion and non-virion RNA polymerases of a thermophilic virus with an extremely long tail.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
05 Jan 2024
05 Jan 2024
Historique:
received:
15
05
2023
accepted:
19
12
2023
medline:
6
1
2024
pubmed:
6
1
2024
entrez:
5
1
2024
Statut:
epublish
Résumé
Thermus thermophilus bacteriophage P23-45 encodes a giant 5,002-residue tail tape measure protein (TMP) that defines the length of its extraordinarily long tail. Here, we show that the N-terminal portion of P23-45 TMP is an unusual RNA polymerase (RNAP) homologous to cellular RNAPs. The TMP-fused virion RNAP transcribes pre-early phage genes, including a gene that encodes another, non-virion RNAP, that transcribes early and some middle phage genes. We report the crystal structures of both P23-45 RNAPs. The non-virion RNAP has a crab-claw-like architecture. By contrast, the virion RNAP adopts a unique flat structure without a clamp. Structure and sequence comparisons of the P23-45 RNAPs with other RNAPs suggest that, despite the extensive functional differences, the two P23-45 RNAPs originate from an ancient gene duplication in an ancestral phage. Our findings demonstrate striking adaptability of RNAPs that can be attained within a single virus species.
Identifiants
pubmed: 38182597
doi: 10.1038/s41467-023-44630-z
pii: 10.1038/s41467-023-44630-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
317Informations de copyright
© 2024. The Author(s).
Références
Griesenbeck, J., Tschochner, H. & Grohmann, D. Structure and function of RNA polymerases and the transcription machineries. Subcell. Biochem. 83, 225–270 (2017).
pubmed: 28271479
doi: 10.1007/978-3-319-46503-6_9
Werner, F. Structural evolution of multisubunit RNA polymerases. Trends Microbiol. 16, 247–250 (2008).
pubmed: 18468900
doi: 10.1016/j.tim.2008.03.008
Werner, F. & Grohmann, D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat. Rev. Microbiol. 9, 85–98 (2011).
pubmed: 21233849
doi: 10.1038/nrmicro2507
Ishihama, A. Subunit of assembly of Escherichia coli RNA polymerase. Adv. Biophys. 14, 1–35 (1981).
pubmed: 7015808
Lane, W. J. & Darst, S. A. Molecular evolution of multisubunit RNA polymerases: structural analysis. J. Mol. Biol. 395, 686–704 (2010).
pubmed: 19895816
doi: 10.1016/j.jmb.2009.10.063
Minakhin, L. et al. Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc. Natl Acad. Sci. USA 98, 892–897 (2001).
pubmed: 11158566
pmcid: 14680
doi: 10.1073/pnas.98.3.892
Berdygulova, Z. et al. Temporal regulation of gene expression of the thermus thermophilus bacteriophage P23-45. J. Mol. Biol. 405, 125–142 (2011).
pubmed: 21050864
doi: 10.1016/j.jmb.2010.10.049
Iyer, L. M. & Aravind, L. Insights from the architecture of the bacterial transcription apparatus. J. Struct. Biol. 179, 299–319 (2012).
pubmed: 22210308
doi: 10.1016/j.jsb.2011.12.013
Lavysh, D. et al. The genome of AR9, a giant transducing Bacillus phage encoding two multisubunit RNA polymerases. Virology 495, 185–196 (2016).
pubmed: 27236306
doi: 10.1016/j.virol.2016.04.030
Mirzakhanyan, Y. & Gershon, P. D. Multisubunit DNA-dependent RNA polymerases from Vaccinia virus and other nucleocytoplasmic large-DNA viruses: impressions from the age of structure. Microbiol. Mol. Biol. Rev. 81, 1136–1157 (2017).
Ruprich-Robert, G. & Thuriaux, P. Non-canonical DNA transcription enzymes and the conservation of two-barrel RNA polymerases. Nuc. Acids Res. 38, 4559–4569 (2010).
doi: 10.1093/nar/gkq201
Yutin, N. et al. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 3, 38–46 (2018).
pubmed: 29133882
doi: 10.1038/s41564-017-0053-y
Hillen, H. S. et al. Structural basis of Poxvirus transcription: transcribing and capping vaccinia complexes. Cell 179, 1525–1536.e1512 (2019).
pubmed: 31835031
doi: 10.1016/j.cell.2019.11.023
Forrest, D., James, K., Yuzenkova, Y. & Zenkin, N. Single-peptide DNA-dependent RNA polymerase homologous to multi-subunit RNA polymerase. Nat. Commun. 8, 15774 (2017).
pubmed: 28585540
pmcid: 5467207
doi: 10.1038/ncomms15774
Fraser, A. et al. Structural basis of template strand deoxyuridine promoter recognition by a viral RNA polymerase. Nat. Commun. 13, 3526 (2022).
pubmed: 35725571
pmcid: 9209446
doi: 10.1038/s41467-022-31214-6
Sokolova, M. et al. A non-canonical multisubunit RNA polymerase encoded by the AR9 phage recognizes the template strand of its uracil-containing promoters. Nuc. Acids Res. 45, 5958–5967 (2017).
doi: 10.1093/nar/gkx264
Yakunina, M. et al. A non-canonical multisubunit RNA polymerase encoded by a giant bacteriophage. Nuc. Acids Res. 43, 10411–10420 (2015).
Drobysheva, A. V. et al. Structure and function of virion RNA polymerase of a crAss-like phage. Nature 589, 306–309 (2021).
pubmed: 33208949
doi: 10.1038/s41586-020-2921-5
Ooi, W. Y. et al. A thermus phage protein inhibits host RNA polymerase by preventing template DNA strand loading during open promoter complex formation. Nuc. Acids Res. 46, 431–441 (2018).
doi: 10.1093/nar/gkx1162
Severinov, K., Minakhin, L., Sekine, S. I., Lopatina, A. & Yokoyama, S. Molecular basis of RNA polymerase promoter specificity switch revealed through studies of Thermus bacteriophage transcription regulator. Bacteriophage 4, e29399 (2014).
pubmed: 25105059
pmcid: 4124052
doi: 10.4161/bact.29399
Tagami, S. et al. Structural basis for promoter specificity switching of RNA polymerase by a phage factor. Genes Dev. 28, 521–531 (2014).
pubmed: 24589779
pmcid: 3950348
doi: 10.1101/gad.233916.113
Minakhin, L. et al. Genome comparison and proteomic characterization of Thermus thermophilus bacteriophages P23-45 and P74-26: siphoviruses with triplex-forming sequences and the longest known tails. J. Mol. Biol. 378, 468–480 (2008).
pubmed: 18355836
pmcid: 2440725
doi: 10.1016/j.jmb.2008.02.018
Cui, R. et al. Structural insights into the dual activities of the two-barrel RNA polymerase QDE-1. Nuc. Acids Res. 50, 10169–10186 (2022).
doi: 10.1093/nar/gkac727
Qian, X. et al. Functional evolution in orthologous cell-encoded RNA-dependent RNA polymerases. J. Biol. Chem. 291, 9295–9309 (2016).
pubmed: 26907693
pmcid: 4861493
doi: 10.1074/jbc.M115.685933
Salgado, P. S. et al. The structure of an RNAi polymerase links RNA silencing and transcription. PLoS Biol. 4, e434 (2006).
pubmed: 17147473
pmcid: 1750930
doi: 10.1371/journal.pbio.0040434
Putzeys, L. et al. Development of ONT-cappable-seq to unravel the transcriptional landscape of Pseudomonas phages. Comput. Struct. Biotechnol. J. 20, 2624–2638 (2022).
pubmed: 35685363
pmcid: 9163698
doi: 10.1016/j.csbj.2022.05.034
Alfi, A. et al. Cell-free mutant analysis combined with structure prediction of a lasso peptide biosynthetic protease B2. ACS Synth. Biol. 11, 2022–2028 (2022).
pubmed: 35674818
doi: 10.1021/acssynbio.2c00176
Raia, P. et al. Structure of the DP1-DP2 PolD complex bound with DNA and its implications for the evolutionary history of DNA and RNA polymerases. PLoS Biol. 17, e3000122 (2019).
pubmed: 30657780
pmcid: 6355029
doi: 10.1371/journal.pbio.3000122
Sauguet, L., Raia, P., Henneke, G. & Delarue, M. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography. Nat. Commun. 7, 12227 (2016).
pubmed: 27548043
doi: 10.1038/ncomms12227
Sauguet, L. The extended “Two-Barrel” polymerases superfamily: structure, function and evolution. J. Mol. Biol. 431, 4167–4183 (2019).
Madru, C. et al. Structural basis for the increased processivity of D-family DNA polymerases in complex with PCNA. Nat. Commun. 11, 1591 (2020).
pubmed: 32221299
pmcid: 7101311
doi: 10.1038/s41467-020-15392-9
Davidson, A. R., Cardarelli, L., Pell, L. G., Radford, D. R. & Maxwell, K. L. Long noncontractile tail machines of bacteriophages. Adv. Exp. Med. Biol. 726, 115–142 (2012).
pubmed: 22297512
doi: 10.1007/978-1-4614-0980-9_6
Linares, R., Arnaud, C. A., Degroux, S., Schoehn, G. & Breyton, C. Structure, function and assembly of the long, flexible tail of siphophages. Curr. Opin. Virol. 45, 34–42 (2020).
pubmed: 32777752
doi: 10.1016/j.coviro.2020.06.010
Lenneman, B. R. & Rothman-Denes, L. B. Structural and biochemical investigation of bacteriophage N4-encoded RNA polymerases. Biomolecules 5, 647–667 (2015).
pubmed: 25924224
pmcid: 4496689
doi: 10.3390/biom5020647
Grunberger, F., Ferreira-Cerca, S. & Grohmann, D. Nanopore sequencing of RNA and cDNA molecules in escherichia coli. RNA 28, 400–417 (2022).
pubmed: 34906997
pmcid: 8848933
doi: 10.1261/rna.078937.121
Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME suite. Nuc. Acids Res. 43, W39–W49 (2015).
doi: 10.1093/nar/gkv416
Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).
pubmed: 21330290
pmcid: 3065696
doi: 10.1093/bioinformatics/btr064
Naville, M., Ghuillot-Gaudeffroy, A., Marchais, A. & Gautheret, D. ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol. 8, 11–13 (2011).
pubmed: 21282983
doi: 10.4161/rna.8.1.13346
Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993).
pubmed: 7678431
doi: 10.1006/jmbi.1993.1012
Kim, Y. et al. Large-scale evaluation of protein reductive methylation for improving protein crystallization. Nat. Methods 5, 853–854 (2008).
pubmed: 18825126
pmcid: 2678869
doi: 10.1038/nmeth1008-853
Rauert, W., Eddine, A. N., Kaufmann, S. H., Weiss, M. S. & Janowski, R. Reductive methylation to improve crystallization of the putative oxidoreductase Rv0765c from mycobacterium tuberculosis. Acta. Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 63, 507–511 (2007).
pubmed: 17554174
pmcid: 2335070
doi: 10.1107/S1744309107022506
Hirata, K. et al. ZOO: an automatic data-collection system for high-throughput structure analysis in protein microcrystallography. Acta. Crystallogr. Sect. D. 75, 138–150 (2019).
doi: 10.1107/S2059798318017795
Yamashita, K., Hirata, K. & Yamamoto, M. KAMO: towards automated data processing for microcrystals. Acta. Crystallogr. Sect. D. 74, 441–449 (2018).
doi: 10.1107/S2059798318004576
Kabsch, W. XDS. Acta. Crystallogr. Sect. D. 66, 125–132 (2010).
doi: 10.1107/S0907444909047337
Terwilliger, T. C. et al. Decision-making in structure solution using Bayesian estimates of map quality: the phenix autoSol wizard. Acta. Crystallogr. Sect. D. 65, 582–601 (2009).
doi: 10.1107/S0907444909012098
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta. Crystallogr. Sect. D. 66, 486–501 (2010).
doi: 10.1107/S0907444910007493
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta. Crystallogr. Sect. D. 75, 861–877 (2019).
doi: 10.1107/S2059798319011471
Schrodinger, L. The PyMOL Molecular Graphics System https://www.sciepub.com/reference/159710 (2015).
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
pubmed: 19461840
pmcid: 2483472
doi: 10.1107/S0021889807021206
Vassylyev, D. G. et al. Structural basis for substrate loading in bacterial RNA polymerase. Nature 448, 163–168 (2007).
pubmed: 17581591
doi: 10.1038/nature05931
Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).
pubmed: 7584402
Makarova, K. S. et al. Evolutionary classification of CRISPR-cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol 18, 67–83 (2020).
pubmed: 31857715
doi: 10.1038/s41579-019-0299-x