Tuning of liver circadian transcriptome rhythms by thyroid hormone state in male mice.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
05 Jan 2024
Historique:
received: 07 10 2023
accepted: 19 12 2023
medline: 6 1 2024
pubmed: 6 1 2024
entrez: 5 1 2024
Statut: epublish

Résumé

Thyroid hormones (THs) are important regulators of systemic energy metabolism. In the liver, they stimulate lipid and cholesterol turnover and increase systemic energy bioavailability. It is still unknown how the TH state interacts with the circadian clock, another important regulator of energy metabolism. We addressed this question using a mouse model of hypothyroidism and performed circadian analyses. Low TH levels decreased locomotor activity, food intake, and body temperature mostly in the active phase. Concurrently, liver transcriptome profiling showed only subtle effects compared to elevated TH conditions. Comparative circadian transcriptome profiling revealed alterations in mesor, amplitude, and phase of transcript levels in the livers of low-TH mice. Genes associated with cholesterol uptake, biosynthesis, and bile acid secretion showed reduced mesor. Increased and decreased cholesterol levels in the serum and liver were identified, respectively. Combining data from low- and high-TH conditions allowed the identification of 516 genes with mesor changes as molecular markers of the liver TH state. We explored these genes and created an expression panel that assesses liver TH state in a time-of-day dependent manner. Our findings suggest that the liver has a low TH action under physiological conditions. Circadian profiling reveals genes as potential markers of liver TH state.

Identifiants

pubmed: 38182610
doi: 10.1038/s41598-023-50374-z
pii: 10.1038/s41598-023-50374-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

640

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : 353-10/1, GRK-1957, and CRC/TR 296 "LOCOTACT" (ID 424957847, TP13 and TP14)
Organisme : Deutsche Forschungsgemeinschaft
ID : 353-10/1, GRK-1957, and CRC/TR 296 "LOCOTACT" (ID 424957847, TP13 and TP14)

Informations de copyright

© 2024. The Author(s).

Références

Ritter, M. J., Amano, I. & Hollenberg, A. N. Thyroid hormone signaling and the liver. Hepatology 72, 742–752 (2020).
doi: 10.1002/hep.31296 pubmed: 32343421
Mullur, R., Liu, Y. Y. & Brent, G. A. Thyroid hormone regulation of metabolism. Physiol. Rev. 94, 355–382 (2014).
doi: 10.1152/physrev.00030.2013 pubmed: 24692351 pmcid: 4044302
Sinha, R. A., Singh, B. K. & Yen, P. M. Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends Endocrinol. Metab. 25, 538–545 (2014).
doi: 10.1016/j.tem.2014.07.001 pubmed: 25127738
Sinha, R. A., Singh, B. K. & Yen, P. M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 14, 259–269 (2018).
doi: 10.1038/nrendo.2018.10 pubmed: 29472712 pmcid: 6013028
Elshinshawy, S. et al. The interrelation between hypothyroidism and non-alcoholic fatty liver disease, a cross-sectional study. J. Clin. Exp. Hepatol. 13, 638–648 (2023).
doi: 10.1016/j.jceh.2023.03.004 pubmed: 37440948
Kim, D. et al. Subclinical hypothyroidism and low-normal thyroid function are associated with nonalcoholic steatohepatitis and fibrosis. Clin. Gastroenterol. Hepatol. 16, 123–131 (2018).
doi: 10.1016/j.cgh.2017.08.014 pubmed: 28823829
Lai, S., Li, J., Wang, Z., Wang, W. & Guan, H. Sensitivity to thyroid hormone indices are closely associated with NAFLD. Front. Endocrinol. 12, 766419 (2021).
doi: 10.3389/fendo.2021.766419
Ludwig, U. et al. Subclinical and clinical hypothyroidism and non-alcoholic fatty liver disease: A cross-sectional study of a random population sample aged 18 to 65 years. BMC Endocr. Disord. 15, 41 (2015).
doi: 10.1186/s12902-015-0030-5 pubmed: 26276551 pmcid: 4536732
de Assis, L. V. M. & Oster, H. The circadian clock and metabolic homeostasis: Entangled networks. Cell. Mol. Life Sci. CMLS https://doi.org/10.1007/s00018-021-03800-2 (2021).
doi: 10.1007/s00018-021-03800-2 pubmed: 33683376
Finger, A. M. & Kramer, A. Mammalian circadian systems: Organization and modern life challenges. Acta Physiol. https://doi.org/10.1111/apha.13548 (2020).
doi: 10.1111/apha.13548
de Assis, L. V. M. et al. Rewiring of liver diurnal transcriptome rhythms by triiodothyronine (T3) supplementation. eLife 11, e79405 (2022).
doi: 10.7554/eLife.79405 pubmed: 35894384 pmcid: 9391036
Hoefig, C. S. et al. Biosynthesis of 3-iodothyronamine from T4 in murine intestinal tissue. Endocrinology 156, 4356–4364 (2015).
doi: 10.1210/en.2014-1499 pubmed: 26348473
Kaspari, R. R. et al. The paradoxical lean phenotype of hypothyroid mice is marked by increased adaptive thermogenesis in the skeletal muscle. Proc. Natl. Acad. Sci. USA 117, 22544–22551 (2020).
doi: 10.1073/pnas.2008919117 pubmed: 32826330 pmcid: 7486777
Hughes, M. E., Hogenesch, J. B. & Kornacker, K. JTK_CYCLE: An efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J. Biol. Rhythms 25, 372–380 (2010).
doi: 10.1177/0748730410379711 pubmed: 20876817 pmcid: 3119870
Parsons, R., Parsons, R., Garner, N., Oster, H. & Rawashdeh, O. CircaCompare: A method to estimate and statistically support differences in mesor, amplitude and phase, between circadian rhythms. Bioinformatics 36, 1208–1212 (2020).
doi: 10.1093/bioinformatics/btz730 pubmed: 31588519
Zekri, Y., Guyot, R. & Flamant, F. An atlas of thyroid hormone receptors’ target genes in mouse tissues. Int. J. Mol. Sci. 23, 11444 (2022).
doi: 10.3390/ijms231911444 pubmed: 36232747 pmcid: 9570117
Nock, S. et al. CD5L constitutes a novel biomarker for integrated hepatic thyroid hormone action. Thyroid 30, 908–923 (2020).
doi: 10.1089/thy.2019.0635 pubmed: 32183611
Shabtai, Y. et al. A coregulator shift, rather than the canonical switch, underlies thyroid hormone action in the liver. Genes Dev. 35, 367–378 (2021).
doi: 10.1101/gad.345686.120 pubmed: 33602873 pmcid: 7919419
Johann, K. et al. Thyroid-hormone-induced browning of white adipose tissue does not contribute to thermogenesis and glucose consumption. Cell Rep. 27, 3385-3400.e3 (2019).
doi: 10.1016/j.celrep.2019.05.054 pubmed: 31189119
Yavuz, S., Nunez, S., del Prado, S. & Celi, F. S. Thyroid hormone action and energy expenditure. J. Endocr. Soc. 3(7), 1345–1356 (2019).
doi: 10.1210/js.2018-00423 pubmed: 31286098 pmcid: 6608565
Luongo, C., Dentice, M. & Salvatore, D. Deiodinases and their intricate role in thyroid hormone homeostasis. Nat. Rev. Endocrinol. 15, 479–488 (2019).
doi: 10.1038/s41574-019-0218-2 pubmed: 31160732
Bruinstroop, E. et al. Early induction of hepatic deiodinase type 1 inhibits hepatosteatosis during NAFLD progression. Mol. Metab. 53, 101266 (2021).
doi: 10.1016/j.molmet.2021.101266 pubmed: 34098145 pmcid: 8237360
de Assis, L. V. M., Demir, M. & Oster, H. Nonalcoholic steatohepatitis disrupts diurnal liver transcriptome rhythms in mice. Cell. Mol. Gastroenterol. Hepatol. 16, 341–354 (2023).
doi: 10.1016/j.jcmgh.2023.05.008 pubmed: 37270062 pmcid: 10444956
Wirth, E. K., Puengel, T., Spranger, J. & Tacke, F. Thyroid hormones as a disease modifier and therapeutic target in nonalcoholic steatohepatitis. Expert Rev. Endocrinol. Metab. 17, 425–434 (2022).
doi: 10.1080/17446651.2022.2110864 pubmed: 35957531
Zhao, M. et al. Development of thyroid hormones and synthetic thyromimetics in non-alcoholic fatty liver disease. Int. J. Mol. Sci. 23, 1102 (2022).
doi: 10.3390/ijms23031102 pubmed: 35163026 pmcid: 8835192
de Assis, L. V. M., Demir, M. & Oster, H. The role of the circadian clock in the development, progression, and treatment of non-alcoholic fatty liver disease. Acta Physiol. 237, e13915 (2023).
doi: 10.1111/apha.13915
Marjot, T., Ray, D. W. & Tomlinson, J. W. Is it time for chronopharmacology in NASH?. J. Hepatol. https://doi.org/10.1016/j.jhep.2021.12.039 (2022).
doi: 10.1016/j.jhep.2021.12.039 pubmed: 35868584 pmcid: 9296253
Zhou, L. et al. Endoplasmic reticulum stress may play a pivotal role in lipid metabolic disorders in a novel mouse model of subclinical hypothyroidism. Sci. Rep. 6, 31381 (2016).
doi: 10.1038/srep31381 pubmed: 27539723 pmcid: 4990971
Ferrandino, G. et al. Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms. Proc. Natl. Acad. Sci. U S A 114, E9172–E9180 (2017).
doi: 10.1073/pnas.1707797114 pubmed: 29073114 pmcid: 5664516
Yan, Y. et al. Hepatic thyroid hormone signalling modulates glucose homeostasis through the regulation of GLP-1 production via bile acid-mediated FXR antagonism. Nat. Commun. 13, 6408 (2022).
doi: 10.1038/s41467-022-34258-w pubmed: 36302774 pmcid: 9613917
Kube, I. et al. Hepatobiliary thyroid hormone deficiency impacts bile acid hydrophilicity and aquaporins in cholestatic C57BL/6J mice. Int. J. Mol. Sci. 23, 12355 (2022).
doi: 10.3390/ijms232012355 pubmed: 36293210 pmcid: 9603918
Kube, I. et al. Hypothyroidism Increases cholesterol gallstone prevalence in mice by elevated hydrophobicity of primary bile acids. Thyroid 31, 973–984 (2021).
doi: 10.1089/thy.2020.0636 pubmed: 33231505
Wang, Z. et al. Assessing the influence of propylthiouracil and phenytoin on the metabolomes of the thyroid, liver, and plasma in rats. Metabolites 13, 847 (2023).
doi: 10.3390/metabo13070847 pubmed: 37512556 pmcid: 10383188
Reinke, H. & Asher, G. Crosstalk between metabolism and circadian clocks. Nat. Rev. Mol. Cell Biol. 20, 227–241 (2019).
doi: 10.1038/s41580-018-0096-9 pubmed: 30635659
Reinke, H. & Asher, G. Circadian clock control of liver metabolic functions. Gastroenterology 150, 574–580 (2016).
doi: 10.1053/j.gastro.2015.11.043 pubmed: 26657326
Heldmaier, G. Metabolic and thermoregulatory responses to heat and cold in the Djungarian hamster, Phodopus sungorus. J. Comp. Physiol. 102, 115–122 (1975).
doi: 10.1007/BF00691297
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).
doi: 10.1093/nar/29.9.e45 pubmed: 11328886 pmcid: 55695
Wu, G., Anafi, R. C., Hughes, M. E., Kornacker, K. & Hogenesch, J. B. MetaCycle: an integrated R package to evaluate periodicity in large scale data. Bioinformatics 32, 3351–3353 (2016).
doi: 10.1093/bioinformatics/btw405 pubmed: 27378304 pmcid: 5079475
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
doi: 10.1038/nprot.2008.211 pubmed: 19131956
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PloS One 6, e21800 (2011).
doi: 10.1371/journal.pone.0021800 pubmed: 21789182 pmcid: 3138752

Auteurs

Leonardo Vinicius Monteiro de Assis (LVM)

Center of Brain Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Marie Curie Street, 23562, Lübeck, Germany. leonardo.deassis@uni-luebeck.de.
University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany. leonardo.deassis@uni-luebeck.de.

Lisbeth Harder (L)

Center of Brain Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Marie Curie Street, 23562, Lübeck, Germany.
Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.

José Thalles Lacerda (JT)

Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil.

Rex Parsons (R)

Faculty of Health, School of Public Health and Social Work, Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, Queensland University of Technology, Kelvin Grove, Australia.

Meike Kaehler (M)

Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.

Ingolf Cascorbi (I)

Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.

Inga Nagel (I)

Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.

Oliver Rawashdeh (O)

Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, Australia.

Jens Mittag (J)

Center of Brain Behavior and Metabolism, Institute for Endocrinology and Diabetes - Molecular Endocrinology, University of Lübeck, Lübeck, Germany.

Henrik Oster (H)

Center of Brain Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Marie Curie Street, 23562, Lübeck, Germany. henrik.oster@uni-luebeck.de.
University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany. henrik.oster@uni-luebeck.de.

Classifications MeSH