Modulation of learning safety signals by acute stress: paraventricular thalamus and prefrontal inhibition.


Journal

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
ISSN: 1740-634X
Titre abrégé: Neuropsychopharmacology
Pays: England
ID NLM: 8904907

Informations de publication

Date de publication:
05 Jan 2024
Historique:
received: 16 05 2023
accepted: 18 12 2023
revised: 07 12 2023
medline: 6 1 2024
pubmed: 6 1 2024
entrez: 5 1 2024
Statut: aheadofprint

Résumé

Distinguishing between cues predicting safety and danger is crucial for survival. Impaired learning of safety cues is a central characteristic of anxiety-related disorders. Despite recent advances in dissecting the neural circuitry underlying the formation and extinction of conditioned fear, the neuronal basis mediating safety learning remains elusive. Here, we showed that safety learning reduces the responses of paraventricular thalamus (PVT) neurons to safety cues, while activation of these neurons controls both the formation and expression of safety memory. Additionally, the PVT preferentially activates prefrontal cortex somatostatin interneurons (SOM-INs), which subsequently inhibit parvalbumin interneurons (PV-INs) to modulate safety memory. Importantly, we demonstrate that acute stress impairs the expression of safety learning, and this impairment can be mitigated when the PVT is inhibited, indicating PVT mediates the stress effect. Altogether, our findings provide insights into the mechanism by which acute stress modulates safety learning.

Identifiants

pubmed: 38182776
doi: 10.1038/s41386-023-01790-2
pii: 10.1038/s41386-023-01790-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Sangha S, Diehl MM, Bergstrom HC, Drew MR. Know safety, no fear. Neurosci Biobehav Rev. 2020;108:218–30.
pubmed: 31738952 doi: 10.1016/j.neubiorev.2019.11.006
Odriozola P, Gee DG. Learning about safety: conditioned inhibition as a novel approach to fear reduction targeting the developing brain. Am J Psychiatry. 2021;178:136–55.
pubmed: 33167673 doi: 10.1176/appi.ajp.2020.20020232
Christianson JP, Fernando AB, Kazama AM, Jovanovic T, Ostroff LE, Sangha S. Inhibition of fear by learned safety signals: a mini-symposium review. J Neurosci. 2012;32:14118–24.
pubmed: 23055481 pmcid: 3541026 doi: 10.1523/JNEUROSCI.3340-12.2012
Jovanovic T, Kazama A, Bachevalier J, Davis M. Impaired safety signal learning may be a biomarker of PTSD. Neuropharmacology. 2012;62:695–704.
pubmed: 21377482 doi: 10.1016/j.neuropharm.2011.02.023
Bouton ME. Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol Psychiatry. 2002;52:976–86.
pubmed: 12437938 doi: 10.1016/S0006-3223(02)01546-9
Kida S. Reconsolidation/destabilization, extinction and forgetting of fear memory as therapeutic targets for PTSD. Psychopharmacology. 2019;236:49–57.
pubmed: 30374892 doi: 10.1007/s00213-018-5086-2
Furini C, Myskiw J, Izquierdo I. The learning of fear extinction. Neurosci Biobehav Rev. 2014;47:670–83.
pubmed: 25452113 doi: 10.1016/j.neubiorev.2014.10.016
Tovote P, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci. 2015;16:317–31.
pubmed: 25991441 doi: 10.1038/nrn3945
Yan R, Wang T, Zhou Q. Elevated dopamine signaling from ventral tegmental area to prefrontal cortical parvalbumin neurons drives conditioned inhibition. Proc Natl Acad Sci USA. 2019;116:13077–86.
pubmed: 31182594 pmcid: 6600914 doi: 10.1073/pnas.1901902116
Sosa R, Ramírez MN. Conditioned inhibition: Historical critiques and controversies in the light of recent advances. J Exp Psychol Anim Learn Cogn. 2019;45:17–42.
pubmed: 30604993 doi: 10.1037/xan0000193
Kong E, Monje FJ, Hirsch J, Pollak DD. Learning not to fear: neural correlates of learned safety. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2014;39:515–27.
doi: 10.1038/npp.2013.191
Rescorla RA. Pavlovian conditioned inhibition. Psychol Bull. 1969;72:77–94.
doi: 10.1037/h0027760
Walasek G, Wesierska M, Zieliński K. Conditioning of fear and conditioning of safety in rats. Acta Neurobiol Exp. 1995;55:121–32.
doi: 10.55782/ane-1995-1067
Tanimoto H, Heisenberg M, Gerber B. Experimental psychology: event timing turns punishment to reward. Nature. 2004;430:983.
pubmed: 15329711 doi: 10.1038/430983a
Paxinos G, Franklin K, Franklin K. The Mouse Brain in Stereotaxic Coordinates, Compact. The Mouse Brain in Stereotaxic Coordinates, Compact.
Do-Monte FH, Quiñones-Laracuente K, Quirk GJ. A temporal shift in the circuits mediating retrieval of fear memory. Nature. 2015;519:460–3.
pubmed: 25600268 pmcid: 4376623 doi: 10.1038/nature14030
Padilla-Coreano N, Do-Monte FH, Quirk GJ. A time-dependent role of midline thalamic nuclei in the retrieval of fear memory. Neuropharmacology. 2012;62:457–63.
pubmed: 21903111 doi: 10.1016/j.neuropharm.2011.08.037
Juruena MF, Eror F, Cleare AJ, Young AH. The role of early life stress in HPA axis and anxiety. Adv Exp Med Biol. 2020;1191:141–53.
pubmed: 32002927 doi: 10.1007/978-981-32-9705-0_9
Bondi CO, Rodriguez G, Gould GG, Frazer A, Morilak DA. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacol : Off Publ Am Coll Neuropsychopharmacol. 2008;33:320–31.
doi: 10.1038/sj.npp.1301410
Wang T, Yan R, Zhang X, Wang Z, Duan H, Wang Z, et al. Paraventricular thalamus dynamically modulates aversive memory via tuning prefrontal inhibitory circuitry. J Neurosci. 2023;43:3630–46.
Barson JR, Mack NR, Gao WJ. The paraventricular nucleus of the thalamus is an important node in the emotional processing network. Front Behav Neurosci. 2020;14:598469.
pubmed: 33192373 pmcid: 7658442 doi: 10.3389/fnbeh.2020.598469
Zhao D, Wang D, Wang W, Dai J, Cui M, Wu M, et al. The altered sensitivity of acute stress induced anxiety-related behaviors by modulating insular cortex-paraventricular thalamus-bed nucleus of the stria terminalis neural circuit. Neurobiol Dis. 2022;174:105890.
pubmed: 36220611 doi: 10.1016/j.nbd.2022.105890
Yan R, Wang T, Ma X, Zhang X, Zheng R, Zhou Q. Prefrontal inhibition drives formation and dynamic expression of probabilistic Pavlovian fear conditioning. Cell Rep. 2021;36:109503.
pubmed: 34380026 doi: 10.1016/j.celrep.2021.109503
Lubow RE. Latent inhibition. Psychol Bull. 1973;79:398–407.
pubmed: 4575029 doi: 10.1037/h0034425
Holt W, Maren S. Muscimol inactivation of the dorsal hippocampus impairs contextual retrieval of fear memory. J Neurosci. 1999;19:9054–62.
pubmed: 10516322 pmcid: 6782751 doi: 10.1523/JNEUROSCI.19-20-09054.1999
Cummings KA, Clem RL. Prefrontal somatostatin interneurons encode fear memory. Nat Neurosci. 2020;23:61–74.
pubmed: 31844314 doi: 10.1038/s41593-019-0552-7
Fadok JP, Krabbe S, Markovic M, Courtin J, Xu C, Massi L, et al. A competitive inhibitory circuit for selection of active and passive fear responses. Nature. 2017;542:96–100.
pubmed: 28117439 doi: 10.1038/nature21047
Krabbe S, Paradiso E, d’Aquin S, Bitterman Y, Courtin J, Xu C, et al. Adaptive disinhibitory gating by VIP interneurons permits associative learning. Nat Neurosci. 2019;22:1834–43.
pubmed: 31636447 doi: 10.1038/s41593-019-0508-y
Roy DS, Park YG, Kim ME, Zhang Y, Ogawa SK, DiNapoli N, et al. Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nat Commun. 2022;13:1799.
pubmed: 35379803 pmcid: 8980018 doi: 10.1038/s41467-022-29384-4
Bubser M, Deutch AY. Stress induces Fos expression in neurons of the thalamic paraventricular nucleus that innervate limbic forebrain sites. Synapse. 1999;32:13–22.
pubmed: 10188633 doi: 10.1002/(SICI)1098-2396(199904)32:1<13::AID-SYN2>3.0.CO;2-R
Gao C, Leng Y, Ma J, Rooke V, Rodriguez-Gonzalez S, Ramakrishnan C, et al. Two genetically, anatomically and functionally distinct cell types segregate across anteroposterior axis of paraventricular thalamus. Nat Neurosci. 2020;23:217–28.
pubmed: 31932767 pmcid: 7007348 doi: 10.1038/s41593-019-0572-3
Otake K, Kin K, Nakamura Y. Fos expression in afferents to the rat midline thalamus following immobilization stress. Neurosci Res. 2002;43:269–82.
pubmed: 12103445 doi: 10.1016/S0168-0102(02)00042-1
Spencer SJ, Fox JC, Day TA. Thalamic paraventricular nucleus lesions facilitate central amygdala neuronal responses to acute psychological stress. Brain Res. 2004;997:234–7.
pubmed: 14706875 doi: 10.1016/j.brainres.2003.10.054
Zhu L, Wu L, Yu B, Liu X. The participation of a neurocircuit from the paraventricular thalamus to amygdala in the depressive like behavior. Neurosci Lett. 2011;488:81–6.
pubmed: 21073922 doi: 10.1016/j.neulet.2010.11.007
Olff M. Sex and gender differences in post-traumatic stress disorder: an update. Eur J Psychotraumatol. 2017;8(sup4):1351204.
Kooiker CL, Birnie MT, Baram TZ. The Paraventricular Thalamus: A potential sensor and integrator of emotionally salient early-life experiences. Front Behav Neurosci. 2021;15:673162.
pubmed: 34079442 pmcid: 8166219 doi: 10.3389/fnbeh.2021.673162
Li S, Kirouac GJ. Projections from the paraventricular nucleus of the thalamus to the forebrain, with special emphasis on the extended amygdala. J Comp Neurol. 2008;506:263–87.
pubmed: 18022956 doi: 10.1002/cne.21502
Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci USA. 2005;102:9371–6.
pubmed: 15967994 pmcid: 1166638 doi: 10.1073/pnas.0504011102
Roozendaal B, McEwen BS, Chattarji S. Stress, memory and the amygdala. Nat Rev Neurosci. 2009;10:423–33.
pubmed: 19469026 doi: 10.1038/nrn2651
Chauveau F, Lange MD, Jüngling K, Lesting J, Seidenbecher T, Pape HC. Prevention of stress-impaired fear extinction through neuropeptide s action in the lateral amygdala. Neuropsychopharmacology. 2012;37:1588–99.
pubmed: 22298122 pmcid: 3358750 doi: 10.1038/npp.2012.3
Choi EA, Jean-Richard-Dit-Bressel P, Clifford CWG, McNally GP. Paraventricular thalamus controls behavior during motivational conflict. J Neurosci. 2019;39:4945–58.
pubmed: 30979815 pmcid: 6670259 doi: 10.1523/JNEUROSCI.2480-18.2019
Van der Werf YD, Witter MP, Groenewegen HJ. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev. 2002;39:107–40.
pubmed: 12423763 doi: 10.1016/S0165-0173(02)00181-9
Vogt BA, Hof PR, Friedman DP, Sikes RW, Vogt LJ. Norepinephrinergic afferents and cytology of the macaque monkey midline, mediodorsal, and intralaminar thalamic nuclei. Brain Struct Funct. 2008;212:465–79.
pubmed: 18317800 pmcid: 2649766 doi: 10.1007/s00429-008-0178-0
Iglesias AG, Flagel SB. The Paraventricular Thalamus as a critical node of motivated behavior via the hypothalamic-thalamic-striatal circuit. Front Integr Neurosci. 2021;15:706713.
pubmed: 34220458 pmcid: 8250420 doi: 10.3389/fnint.2021.706713
Otis JM, Zhu M, Namboodiri VMK, Cook CA, Kosyk O, Matan AM, et al. Paraventricular Thalamus projection neurons integrate cortical and hypothalamic signals for cue-reward processing. Neuron. 2019;103:423–31.e4.
pubmed: 31196673 pmcid: 6773659 doi: 10.1016/j.neuron.2019.05.018
Campus P, Covelo IR, Kim Y, Parsegian A, Kuhn BN, Lopez SA, et al. The paraventricular thalamus is a critical mediator of top-down control of cue-motivated behavior in rats. Elife. 2019;8:e49041.
Zhu Y, Wienecke CF, Nachtrab G, Chen X. A thalamic input to the nucleus accumbens mediates opiate dependence. Nature. 2016;530:219–22.
pubmed: 26840481 pmcid: 4814115 doi: 10.1038/nature16954
Roozendaal B, Brunson KL, Holloway BL, McGaugh JL, Baram TZ. Involvement of stress-released corticotropin-releasing hormone in the basolateral amygdala in regulating memory consolidation. Proc Natl Acad Sci USA. 2002;99:13908–13.
pubmed: 12361983 pmcid: 129796 doi: 10.1073/pnas.212504599
Rau V, Fanselow MS. Exposure to a stressor produces a long lasting enhancement of fear learning in rats. Stress. 2009;12:125–33.
pubmed: 18609302 doi: 10.1080/10253890802137320
Hermans EJ, Henckens MJ, Joëls M, Fernández G. Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends Neurosci. 2014;37:304–14.
pubmed: 24766931 doi: 10.1016/j.tins.2014.03.006
Gagnon SA, Wagner AD. Acute stress and episodic memory retrieval: neurobiological mechanisms and behavioral consequences. Ann N. Y Acad Sci. 2016;1369:55–75.
pubmed: 26799371 doi: 10.1111/nyas.12996
Packard MG, Goodman J. Emotional arousal and multiple memory systems in the mammalian brain. Front Behav Neurosci. 2012;6:14.
pubmed: 22470324 pmcid: 3313468 doi: 10.3389/fnbeh.2012.00014
Schwabe L. Stress and the engagement of multiple memory systems: integration of animal and human studies. Hippocampus. 2013;23:1035–43.
pubmed: 23929780 doi: 10.1002/hipo.22175
Hamacher-Dang TC, Uengoer M, Wolf OT. Stress impairs retrieval of extinguished and unextinguished associations in a predictive learning task. Neurobiol Learn Mem. 2013;104:1–8.
pubmed: 23623828 doi: 10.1016/j.nlm.2013.04.007
Kinner VL, Wolf OT, Merz CJ. Cortisol increases the return of fear by strengthening amygdala signaling in men. Psychoneuroendocrinology. 2018;91:79–85.
pubmed: 29529523 doi: 10.1016/j.psyneuen.2018.02.020
Merz CJ, Eichholtz A, Wolf OT. Acute stress reduces out-group related safety signaling during fear reinstatement in women. Sci Rep. 2020;10:2092.
pubmed: 32034214 pmcid: 7005737 doi: 10.1038/s41598-020-58977-6
Xu H, Liu L, Tian Y, Wang J, Li J, Zheng J, et al. A disinhibitory microcircuit mediates conditioned social fear in the prefrontal cortex. Neuron. 2019;102:668–82.e5.
pubmed: 30898376 doi: 10.1016/j.neuron.2019.02.026
Courtin J, Chaudun F, Rozeske RR, Karalis N, Gonzalez-Campo C, Wurtz H, et al. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature. 2014;505:92–6.
pubmed: 24256726 doi: 10.1038/nature12755
Chen YH, Hu NY, Wu DY, Bi LL, Luo ZY, Huang L, et al. PV network plasticity mediated by neuregulin1-ErbB4 signalling controls fear extinction. Mol Psychiatry. 2022;27:896–906.
pubmed: 34697452 doi: 10.1038/s41380-021-01355-z
Pollak DD, Rogan MT, Egner T, Perez DL, Yanagihara TK, Hirsch J. A translational bridge between mouse and human models of learned safety. Ann Med. 2010;42:115–22.
pubmed: 20121549 doi: 10.3109/07853890903583666

Auteurs

Zongliang Wang (Z)

State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.

Zeyi Wang (Z)

State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.

Qiang Zhou (Q)

State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. zhouqiang@pkusz.edu.cn.

Classifications MeSH