Adaptable polyaryletherketones (PAEKs) with competing crosslinking and crystallisation mechanisms.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
05 Jan 2024
05 Jan 2024
Historique:
received:
13
11
2023
accepted:
02
01
2024
medline:
6
1
2024
pubmed:
6
1
2024
entrez:
5
1
2024
Statut:
epublish
Résumé
Driven by the need to make high temperature thermoplastic polymers more processable and expand the range of applications, this study reports on the properties of a novel PAEK material developed by Victrex (Thornton Cleveleys, UK) which is capable of undergoing crosslinking or crystallisation, two competing processes that can be adapted via specific processing temperature and time conditions. The uniqueness of this PAEK material resides in its manufacturing approach, where the crosslinkers are incorporated during the polymerisation process, and its distinct properties, including a controllable viscosity that can be tuned from low to high to allow its application in complex manufacturing processes, such as thermoplastic carbon fibre manufacturing.
Identifiants
pubmed: 38182789
doi: 10.1038/s41598-024-51231-3
pii: 10.1038/s41598-024-51231-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
679Informations de copyright
© 2024. The Author(s).
Références
Jones, D. P., Leach, D. C. & Moore, D. R. Mechanical properties of poly(ether-ether-ketone) for engineering applications. Polymer (Guildf) 26(9), 1385–1393. https://doi.org/10.1016/0032-3861(85)90316-7 (1985).
doi: 10.1016/0032-3861(85)90316-7
Shekar, R. I., Kotresh, T. M., Rao, P. M. D. & Kumar, K. Properties of high modulus PEEK yarns for aerospace applications. J. Appl. Polym. Sci. 112(4), 2497–2510. https://doi.org/10.1002/app.29765 (2009).
doi: 10.1002/app.29765
Sarasua, J. R., Remiro, P. M. & Pouyet, J. The mechanical behaviour of PEEK short fibre composites. J. Mater. Sci. 30(13), 3501–3508. https://doi.org/10.1007/BF00349901 (1995).
doi: 10.1007/BF00349901
Goodman, K. E. & Loos, A. C. Thermoplastic prepreg manufacture. J. Thermoplast. Compos. Mater. 3(1), 34–40. https://doi.org/10.1177/089270579000300104 (1990).
doi: 10.1177/089270579000300104
Texier, A. et al. Fabrication of PEEK/carbon fibre composites by aqueous suspension prepregging. Polymer (Guildf) 34(4), 896–906. https://doi.org/10.1016/0032-3861(93)90378-N (1993).
doi: 10.1016/0032-3861(93)90378-N
Kiss, P., Glinz, J., Stadlbauer, W., Burgstaller, C. & Archodoulaki, V. M. “The effect of thermally desized carbon fibre reinforcement on the flexural and impact properties of PA6, PPS and PEEK composite laminates: A comparative study. Compos. B Eng. 215, 108844. https://doi.org/10.1016/j.compositesb.2021.108844 (2021).
doi: 10.1016/j.compositesb.2021.108844
Iyer, S. R. & Drzal, L. T. Manufacture of powder-impregnated thermoplastic composites. J. Thermoplast. Compos. Mater. 3(4), 325–355. https://doi.org/10.1177/089270579000300404 (1990).
doi: 10.1177/089270579000300404
Hou, M., Friedrich, K. & Scherer, R. Optimization of stamp forming of thermoplastic composite bends. Compos. Struct. 27(1–2), 157–167. https://doi.org/10.1016/0263-8223(94)90077-9 (1994).
doi: 10.1016/0263-8223(94)90077-9
Staniland, P. A., Turner, P. M. & Cogswell, F. N. US4904532, US4904532 (1990).
Manolakis, I., Cross, P., Ward, S. & Colquhoun, H. M. Ring-opening polymerization in molten PEEK: Transient reduction of melt-viscosity by macrocyclic aromatic thioetherketones. J. Mater. Chem. 22(38), 20458–20464. https://doi.org/10.1039/c2jm32496b (2012).
doi: 10.1039/c2jm32496b
Sutter, A., Schmutz, P. & Marvel, C. S. Polyaromatic ether-ketones containing various biphenylene units as crosslinking sites. J. Polym. Sci. A 20(3), 609–617. https://doi.org/10.1002/pol.1982.170200303 (1982).
doi: 10.1002/pol.1982.170200303
Chan, C.-M. & Venkatraman, S. Crosslinking of poly(arylene ether ketone)s 1. Rheological behavior of the melt and mechanical properties of cured resin. J. Appl. Polym. Sci. 32(7), 5933–5943. https://doi.org/10.1002/app.1986.070320722 (1986).
doi: 10.1002/app.1986.070320722
Thompson, S. A. & Farris, R. J. A novel method for crosslinking polyetheretherketone. J. Appl. Polym. Sci. 36(5), 1113–1120. https://doi.org/10.1002/app.1988.070360512 (1988).
doi: 10.1002/app.1988.070360512
Yurchenko, M. E., Huang, J., Robisson, A., McKinley, G. H. & Hammond, P. T. Synthesis, mechanical properties and chemical/solvent resistance of crosslinked poly(aryl-ether-ether-ketones) at high temperatures. Polymer (Guildf) 51(9), 1914–1920. https://doi.org/10.1016/j.polymer.2010.01.056 (2010).
doi: 10.1016/j.polymer.2010.01.056
Al Lafi, A. G., Parker, D. J. & Hay, J. N. The crosslinking of poly (ether ether ketone): Thermally and by irradiation. J. Appl. Polym. Sci. 132(22), 1–9. https://doi.org/10.1002/app.41999 (2015).
doi: 10.1002/app.41999
Gong, C. et al. Dual crosslinked phenylethynyl end-capped sulfonated polyimides via the ethynyl and sulfonate groups promoted by PEG. J. Polym. Sci. A Polym. Chem. 49(20), 4476–4491. https://doi.org/10.1002/pola.24889 (2011).
doi: 10.1002/pola.24889
Chaplin, A., Bryce, E., Benstead, M. D. & Turner, M. L. EP003080189B1 Polymeric Materials, WO 2015/087059 (18.06.2015 Gazette 2015/24) (2014).
Ma, X. et al. Crosslinkable fluorinated poly(aryl ether ketone)s containing pendent phenylethynyl moieties for optical waveguide devices. J. Photochem. Photobiol. A Chem. 188(1), 43–50. https://doi.org/10.1016/j.jphotochem.2006.11.016 (2007).
doi: 10.1016/j.jphotochem.2006.11.016
Yi, N., Davies, R., Chaplin, A., McCutchion, P. & Ghita, O. Slow and fast crystallising poly aryl ether ketones (PAEKs) in 3D printing: Crystallisation kinetics, morphology, and mechanical properties. Addit. Manuf. 39, 101843. https://doi.org/10.1016/j.addma.2021.101843 (2021).
doi: 10.1016/j.addma.2021.101843
Chan, C.-M. & Venkatraman, S. Crosslinking of poly(arylene ether ketones). II. Crystallization kinetics. J. Polym. Sci. B Polym. Phys. 25(8), 1655–1665. https://doi.org/10.1002/polb.1987.090250808 (1987).
doi: 10.1002/polb.1987.090250808
Avenet, J., Levy, A., Bailleul, J. L., Le Corre, S. & Delmas, J. Adhesion of high performance thermoplastic composites: Development of a bench and procedure for kinetics identification. Compos. Part A Appl. Sci. Manuf. https://doi.org/10.1016/j.compositesa.2020.106054 (2020).
doi: 10.1016/j.compositesa.2020.106054
Ritter, T. et al. Design and modification of a material extrusion 3D printer to manufacture functional gradient PEEK components. Polymers (Basel) 15(18), 3825. https://doi.org/10.3390/polym15183825 (2023).
doi: 10.3390/polym15183825
pubmed: 37765679
McNiffe, E. et al. Advancements in functionally graded polyether ether ketone components: Design, manufacturing, and characterisation using a modified 3D printer. Polymers (Basel) https://doi.org/10.3390/polym15142992 (2023).
doi: 10.3390/polym15142992
pubmed: 37765679
Buggy, M. & Carew, A. The effect of thermal ageing on carbon fibre-reinforced polyetheretherketone (PEEK). J. Mater. Sci. 29(8), 2255–2259. https://doi.org/10.1007/BF01154707 (1994).
doi: 10.1007/BF01154707
McLauchlin, A. R., Ghita, O. R. & Savage, L. Studies on the reprocessability of poly(ether ether ketone) (PEEK). J. Mater. Process Technol. 214(1), 75–80. https://doi.org/10.1016/j.jmatprotec.2013.07.010 (2014).
doi: 10.1016/j.jmatprotec.2013.07.010
ASTM, E313 Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates. Annual Book of ASTM Standards. Vol. 06(C). 1–6 (online). http://www.astm.org/cgi-bin/resolver.cgi?E313-15e1 (2015).
Barbero-Álvarez, M. A., Menéndez, J. M. & Rodrigo, J. A. An adaptive colour calibration for crowdsourced images in heritage preservation science. IEEE Access 8, 185093–185111. https://doi.org/10.1109/ACCESS.2020.3017390 (2020).
doi: 10.1109/ACCESS.2020.3017390