SARS-CoV-2 vaccination and risk of infectious diseases in hospitalized older patients.
Aged
Hospitalization
Intra-hospital infections
Mortality
SARS-CoV-2 vaccination
Journal
European geriatric medicine
ISSN: 1878-7649
Titre abrégé: Eur Geriatr Med
Pays: Switzerland
ID NLM: 101533694
Informations de publication
Date de publication:
05 Jan 2024
05 Jan 2024
Historique:
received:
05
09
2023
accepted:
15
11
2023
medline:
6
1
2024
pubmed:
6
1
2024
entrez:
5
1
2024
Statut:
aheadofprint
Résumé
Vaccinations, for example flu vaccine, may be a cause of cross-reactive immunostimulation that prevents a larger spectrum of infections. However, whether SARS-CoV-2 vaccinations may also determine this effect is unclear. This study aims, first, to assess the incidence of infections at hospital admission and during the hospitalization in older inpatients vaccinated and unvaccinated against SARS-CoV-2; second, to compare length of hospital stay and in-hospital mortality between vaccinated and unvaccinated individuals. This retrospective study included 754 older inpatients admitted to the Geriatrics and Orthogeriatrics Units of the University Hospital of Ferrara (Italy) between March 2021 and November 2021. Sociodemographic and health-related data, and the diagnosis of infections at hospital admission and during hospitalization were collected from medical records. The sample's mean age was 87.2 years, 59.2% were females, and 75.5% were vaccinated against SARS-CoV-2. Vaccinated individuals had 36% lower odds of intra-hospital infections (OR = 0.64, 95%CI 0.44-0.94) and 39% lower in-hospital death (HR = 0.61, 95%CI 0.39-0.95), also after adjusting for potential confounders, while no significant results emerged about infections at hospital admission. Considering the hospitalization's endpoints, SARS-CoV-2 vaccination was associated with a lower probability of being transferred to long-term care or other hospital departments than returning home (OR = 0.63, 95%CI 0.40-0.99). In older inpatients, SARS-CoV-2 vaccination seems to be associated with a lower likelihood of intra-hospital infectious diseases not caused by SARS-CoV-2 and all-cause in-hospital mortality. The vaccination coverage in the older population could limit not only the onset and severity of COVID-19 but also the occurrence of other infectious diseases.
Identifiants
pubmed: 38182805
doi: 10.1007/s41999-023-00902-x
pii: 10.1007/s41999-023-00902-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to European Geriatric Medicine Society.
Références
Goto T, Yoshida K, Tsugawa Y, Camargo CA, Hasegawa K (2016) Infectious disease-related emergency department visits of elderly adults in the United States, 2011–2012. J Am Geriatr Soc 64:31–36. https://doi.org/10.1111/jgs.13836
doi: 10.1111/jgs.13836
pubmed: 26696501
Levant S, Chari K, DeFrances CJ (2015) Hospitalizations for patients aged 85 and over in the United States, 2000–2010. NCHS Data Brief 1–8
Curns AT, Steiner CA, Sejvar JJ, Schonberger LB (2008) Hospital charges attributable to a primary diagnosis of infectious diseases in older adults in the United States, 1998 to 2004. J Am Geriatr Soc 56:969–975. https://doi.org/10.1111/j.1532-5415.2008.01712.x
doi: 10.1111/j.1532-5415.2008.01712.x
pubmed: 18410319
Liang SY (2016) Sepsis and other infectious disease emergencies in the elderly. Emerg Med Clin North Am 34:501–522. https://doi.org/10.1016/j.emc.2016.04.005
doi: 10.1016/j.emc.2016.04.005
pubmed: 27475012
pmcid: 5022369
Alves VP, Casemiro FG, Araujo BG de, Lima MA de S, Oliveira RS de, Fernandes FT de S, et al. (2021) Factors associated with mortality among elderly people in the COVID-19 pandemic (SARS-CoV-2): a systematic review and meta-analysis. Int J Environ Res Public Health 18:8008. https://doi.org/10.3390/ijerph18158008
Italian prevalence study on the Healthcare-associated Infections and the use of antibiotics in acute hospitals - ECDC Protocol n.d.
WHO. World Report on Ageing and Health (2015) WHO: Geneva, Switzerland:260. n.d
Istituto Superiore di Sanità (ISS) (2022) Epidemia COVID-19. Aggiornamento nazionale 12 gennaio. In: EpiCentro – L’epidemiologia per la sanità pubblica 2022. https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_12-gennaio-2022.pdf n.d.
Su C, Zhang Z, Zhao X, Peng H, Hong Y, Huang L et al (2021) Changes in prevalence of nosocomial infection pre- and post-COVID-19 pandemic from a tertiary Hospital in China. BMC Infect Dis 21:693. https://doi.org/10.1186/s12879-021-06396-x
doi: 10.1186/s12879-021-06396-x
pubmed: 34281515
pmcid: 8289622
Chow EJ, Uyeki TM, Chu HY (2022) The effects of the COVID-19 pandemic on community respiratory virus activity. Nat Rev Microbiol. https://doi.org/10.1038/s41579-022-00807-9
doi: 10.1038/s41579-022-00807-9
pubmed: 36253478
pmcid: 9574826
Heo JY, Song JY, Noh JY, Choi MJ, Yoon JG, Lee SN et al (2018) Effects of influenza immunization on pneumonia in the elderly. Hum Vaccin Immunother 14:744–749. https://doi.org/10.1080/21645515.2017.1405200
doi: 10.1080/21645515.2017.1405200
pubmed: 29135343
Grijalva CG, Zhu Y, Williams DJ, Self WH, Ampofo K, Pavia AT et al (2015) Association between hospitalization with community-acquired laboratory-confirmed influenza pneumonia and prior receipt of influenza vaccination. JAMA 314:1488. https://doi.org/10.1001/jama.2015.12160
doi: 10.1001/jama.2015.12160
pubmed: 26436611
pmcid: 4688454
Suzuki M, Katsurada N, Le MN, Kaneko N, Yaegashi M, Hosokawa N et al (2018) Effectiveness of inactivated influenza vaccine against laboratory-confirmed influenza pneumonia among adults aged ≥65 years in Japan. Vaccine 36:2960–2967. https://doi.org/10.1016/j.vaccine.2018.04.037
doi: 10.1016/j.vaccine.2018.04.037
pubmed: 29685596
pmcid: 7126450
Fallani E, Orsi A, Signori A, Icardi G, Domnich A (2021) An exploratory study to assess patterns of influenza- and pneumonia-related mortality among the Italian elderly. Hum Vaccin Immunother 17:5514–5521. https://doi.org/10.1080/21645515.2021.2005381
doi: 10.1080/21645515.2021.2005381
pubmed: 34965179
pmcid: 8916782
Eggenhuizen PJ, Ng BH, Chang J, Fell AL, Cheong RMY, Wong WY et al (2021) BCG vaccine derived peptides induce SARS-CoV-2 T cell cross-reactivity. Front Immunol. https://doi.org/10.3389/fimmu.2021.692729
doi: 10.3389/fimmu.2021.692729
pubmed: 34421902
pmcid: 8374943
Vojdani A, Vojdani E, Melgar AL, Redd J (2022) Reaction of SARS-CoV-2 antibodies with other pathogens, vaccines, and food antigens. Front Immunol. https://doi.org/10.3389/fimmu.2022.1003094
doi: 10.3389/fimmu.2022.1003094
pubmed: 36211404
pmcid: 9537454
Braconier JH, Myhre EB, Odeberg H (1983) Cross-reacting opsonic antibodies to clinically important pneumococcal serotypes after pneumococcal vaccination. Eur J Clin Microbiol 2:453–458. https://doi.org/10.1007/BF02013903
doi: 10.1007/BF02013903
pubmed: 6641723
Cunningham AL, McIntyre P, Subbarao K, Booy R, Levin MJ (2021) Vaccines for older adults. BMJ. https://doi.org/10.1136/bmj.n188
doi: 10.1136/bmj.n188
pubmed: 33619170
Gnjidic D, Hilmer SN, Blyth FM, Naganathan V, Waite L, Seibel MJ et al (2012) Polypharmacy cutoff and outcomes: five or more medicines were used to identify community-dwelling older men at risk of different adverse outcomes. J Clin Epidemiol 65:989–995. https://doi.org/10.1016/j.jclinepi.2012.02.018
doi: 10.1016/j.jclinepi.2012.02.018
pubmed: 22742913
Masnoon N, Shakib S, Kalisch-Ellett L, Caughey GE (2017) What is polypharmacy? A systematic review of definitions. BMC Geriatr 17:230. https://doi.org/10.1186/s12877-017-0621-2
doi: 10.1186/s12877-017-0621-2
pubmed: 29017448
pmcid: 5635569
Curns AT, Holman RC, Sejvar JJ, Owings MF, Schonberger LB (2005) Infectious disease hospitalizations among older adults in the United States From 1990 through 2002. Arch Intern Med 165:2514. https://doi.org/10.1001/archinte.165.21.2514
doi: 10.1001/archinte.165.21.2514
pubmed: 16314549
Coudert M, Pépin M, de Thezy A, Fercot E, Laycuras M, Coudert A-L et al (2019) Présentation clinique et performance de la bandelette urinaire pour le diagnostic d’infection urinaire en population gériatrique. Rev Med Interne 40:714–721. https://doi.org/10.1016/j.revmed.2019.06.010
doi: 10.1016/j.revmed.2019.06.010
pubmed: 31301943
Pawelec G (2018) Age and immunity: What is “immunosenescence”? Exp Gerontol 105:4–9. https://doi.org/10.1016/j.exger.2017.10.024
doi: 10.1016/j.exger.2017.10.024
pubmed: 29111233
Frasca D, Diaz A, Romero M, Garcia D, Blomberg BB (2020) B cell immunosenescence. Annu Rev Cell Dev Biol 36:551–574. https://doi.org/10.1146/annurev-cellbio-011620-034148
doi: 10.1146/annurev-cellbio-011620-034148
pubmed: 33021823
pmcid: 8060858
Mileto D, Fenizia C, Cutrera M, Gagliardi G, Gigantiello A, De Silvestri A et al (2021) SARS-CoV-2 mRNA vaccine BNT162b2 triggers a consistent cross-variant humoral and cellular response. Emerg Microbes Infect 10:2235–2243. https://doi.org/10.1080/22221751.2021.2004866
doi: 10.1080/22221751.2021.2004866
pubmed: 34749573
pmcid: 8648019
Grobben M, van der Straten K, Brouwer PJ, Brinkkemper M, Maisonnasse P, Dereuddre-Bosquet N et al (2021) Cross-reactive antibodies after SARS-CoV-2 infection and vaccination. Elife. https://doi.org/10.7554/eLife.70330
doi: 10.7554/eLife.70330
pubmed: 34812143
pmcid: 8610423
Narowski TM, Raphel K, Adams LE, Huang J, Vielot NA, Jadi R et al (2022) SARS-CoV-2 mRNA vaccine induces robust specific and cross-reactive IgG and unequal neutralizing antibodies in naive and previously infected people. Cell Rep 38:110336. https://doi.org/10.1016/j.celrep.2022.110336
doi: 10.1016/j.celrep.2022.110336
pubmed: 35090596
pmcid: 8769879
Sampson AT, Heeney J, Cantoni D, Ferrari M, Sans MS, George C et al (2021) Coronavirus pseudotypes for all circulating human coronaviruses for quantification of cross-neutralizing antibody responses. Viruses 13:1579. https://doi.org/10.3390/v13081579
doi: 10.3390/v13081579
pubmed: 34452443
pmcid: 8402765
Loyal L, Braun J, Henze L, Kruse B, Dingeldey M, Reimer U et al (1979) Cross-reactive CD4
doi: 10.1126/science.abh1823
Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM et al (1979) Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 2020(370):89–94. https://doi.org/10.1126/science.abd3871
doi: 10.1126/science.abd3871
Saunders KO, Lee E, Parks R, Martinez DR, Li D, Chen H et al (2021) Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature 594:553–559. https://doi.org/10.1038/s41586-021-03594-0
doi: 10.1038/s41586-021-03594-0
pubmed: 33971664
pmcid: 8528238
Kobiyama K, Ishii KJ (2022) Making innate sense of mRNA vaccine adjuvanticity. Nat Immunol 23:474–476. https://doi.org/10.1038/s41590-022-01168-4
doi: 10.1038/s41590-022-01168-4
pubmed: 35354958
Alameh M-G, Tombácz I, Bettini E, Lederer K, Ndeupen S, Sittplangkoon C et al (2021) Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54:2877-2892.e7. https://doi.org/10.1016/j.immuni.2021.11.001
doi: 10.1016/j.immuni.2021.11.001
pubmed: 34852217
pmcid: 8566475
Lopez Bernal J, Andrews N, Gower C, Robertson C, Stowe J, Tessier E et al (2021) Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study. BMJ. https://doi.org/10.1136/bmj.n1088
doi: 10.1136/bmj.n1088
pubmed: 33985964
Liu Y, Mao B, Liang S, Yang J-W, Lu H-W, Chai Y-H et al (2020) Association between age and clinical characteristics and outcomes of COVID-19. Eur Respir J 55:2001112. https://doi.org/10.1183/13993003.01112-2020
doi: 10.1183/13993003.01112-2020
pubmed: 32312864
pmcid: 7173682