Splenic proteome profiling in response to Marek's disease virus strain GX0101 infection.

Chicken GX0101 Label-free technique Marek’s disease Proteomics

Journal

BMC veterinary research
ISSN: 1746-6148
Titre abrégé: BMC Vet Res
Pays: England
ID NLM: 101249759

Informations de publication

Date de publication:
05 Jan 2024
Historique:
received: 16 03 2023
accepted: 13 12 2023
medline: 6 1 2024
pubmed: 6 1 2024
entrez: 5 1 2024
Statut: epublish

Résumé

Marek's disease virus (MDV) strain GX0101 was the first reported field strain of recombinant gallid herpesvirus type 2 (GaHV-2). However, the splenic proteome of MDV-infected chickens remains unclear. In this study, a total of 28 1-day-old SPF chickens were intraperitoneally injected with chicken embryo fibroblast (CEF) containing 2000 PFU GX0101. Additionally, a control group, consisting of four one-day-old SPF chickens, received intraperitoneal equal doses of CEF. Blood and various tissue samples were collected at different intervals (7, 14, 21, 30, 45, 60, and 90 days post-infection; dpi) for histopathological, real-time PCR, and label-free quantitative analyses. The results showed that the serum expressions of MDV-related genes, meq and gB, peaked at 45 dpi. The heart, liver, and spleen were dissected at 30 and 45 dpi, and their hematoxylin-eosin staining indicated that virus infection compromised the normal organizational structure at 45 dpi. Particularly, the spleen structure was severely damaged, and the lymphocytes in the white medulla were significantly reduced. Furthermore, liquid chromatography-mass spectrometry (LC-MS) and label-free techniques were used to analyze the difference in splenic proteome profiles of the experimental and control groups at 30 and 45 dpi. Proteomic analysis identified 1660 and 1244 differentially expressed proteins (DEPs) at 30 and 40 dpi, respectively, compared with the uninfected spleen tissues. According to GO analysis, these DEPs were involved in processes such as organelle organization, cellular component biogenesis, cellular component assembly, anion binding, small molecule binding, metal ion binding, cation binding, cytosol, nuclear part, etc. Additionally, KEGG analysis indicated that the following pathways were linked to MDV-induced inflammation, apoptosis, and tumor: Wnt, Hippo, AMPK, cAMP, Notch, TGF-β, PI3K-Akt, Rap1, Ras, Calcium, NF-κB, PPAR, cGMP-PKG, Apoptosis, VEGF, mTOR, FoxO, TNF, JAK-STAT, MAPK, Prion disease, T cell receptor, and B cell receptor. We finally screened 674 DEPs that were linked to MDV infection in spleen tissue. This study improves our understanding of the MDV response mechanism in the spleen.

Identifiants

pubmed: 38183097
doi: 10.1186/s12917-023-03852-5
pii: 10.1186/s12917-023-03852-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

10

Informations de copyright

© 2023. The Author(s).

Références

Berthault C, Larcher T, Härtle S, Vautherot JF, Trapp-Fragnet L, Denesvre C. Atrophy of primary lymphoid organs induced by Marek's disease virus during early infection is associated with increased apoptosis, inhibition of cell proliferation and a severe B-lymphopenia. Vet Res. 2018;49(1):31. https://doi.org/10.1186/s13567-018-0526-x .
doi: 10.1186/s13567-018-0526-x pubmed: 29587836 pmcid: 5870490
Baigent SJ, Smith LP, Nair VK, Currie RJ. Vaccinal control of Marek's disease: current challenges, and future strategies to maximize protection. Vet Immunol Immunopathol. 2006;112(1–2):78–86. https://doi.org/10.1016/j.vetimm.2006.03.014 .
doi: 10.1016/j.vetimm.2006.03.014 pubmed: 16682084
Voronin ES, Trubitsyn BI, Dushkin VA. Marek's disease. Vopr Virusol. 1972;17(6):656–61.
pubmed: 4354735
Simu G, Ciobanu H, Ciobanu-Bîlc A. Histological aspects of lymphoid organs in chickens with Marek's disease. Morphol Embryol (Bucur). 1980;26(4):345–7.
pubmed: 6450886
Nazerian K. Oncogenesis of Marek's disease. Cancer Res. 1973;33(6):1427–30.
pubmed: 4578073
Davison F, Nair V. Use of Marek's disease vaccines: could they be driving the virus to increasing virulence? Expert Rev Vaccines. 2005;4(1):77–88. https://doi.org/10.1586/14760584.4.1.77 .
doi: 10.1586/14760584.4.1.77 pubmed: 15757475
Ross LJ, Sanderson M, Scott SD, Binns MM, Doel T, Milne B. Nucleotide sequence and characterization of the Marek's disease virus homologue of glycoprotein B of herpes simplex virus. J Gen Virol. 1989;70(Pt 7):1789–804. https://doi.org/10.1099/0022-1317-70-7-1789 .
doi: 10.1099/0022-1317-70-7-1789 pubmed: 2544666
Turner A, Bruun B, Minson T, Browne H. Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a cos cell transfection system. J Virol. 1998;72(1):873–5. https://doi.org/10.1128/JVI.72.1.873-875.1998 .
doi: 10.1128/JVI.72.1.873-875.1998 pubmed: 9420303 pmcid: 109452
Thanthrige-Don N, Abdul-Careem MF, Shack LA, Burgess SC, Sharif S. Analyses of the spleen proteome of chickens infected with Marek's disease virus. Virology. 2009;390(2):356–67. https://doi.org/10.1016/j.virol.2009.05.020 .
doi: 10.1016/j.virol.2009.05.020 pubmed: 19540544
Lu Z, Qin A, Qian K, Chen X, Jin W, Zhu Y, et al. Proteomic analysis of the host response in the bursa of Fabricius of chickens infected with Marek's disease virus. Virus Res. 2010;153(2):250–7. https://doi.org/10.1016/j.virusres.2010.08.010 .
doi: 10.1016/j.virusres.2010.08.010 pubmed: 20723570
Thanthrige-Don N, Parvizi P, Sarson AJ, Shack LA, Burgess SC, Sharif S. Proteomic analysis of host responses to Marek's disease virus infection in spleens of genetically resistant and susceptible chickens. Dev Comp Immunol. 2010;34(7):699–704. https://doi.org/10.1016/j.dci.2010.01.016 .
doi: 10.1016/j.dci.2010.01.016 pubmed: 20138080
Zhang Z, Cui Z. Isolation of recombinant field strains of Marek's disease virus integrated with reticuloendotheliosis virus genome fragments. Sci China C Life Sci. 2005;48(1):81–8. https://doi.org/10.1360/03yc0270 .
doi: 10.1360/03yc0270 pubmed: 15844360
Xu X, Sun A, Cui Y, Cui Z. Comparision of pathogenicity and horizontal transmission ability between recombinant Marek's disease virus field strain with REV-LTR and a very virulent reference strain. Wei Sheng Wu Xue Bao. 2009;49(4):540–3.
pubmed: 19621645
Su S, Cui N, Li Y, Yu MX, Zhang T, Cheng Z, et al. Increased horizontal transmission of recombinant Marek's disease virus due to Reticuloendotheliosis virus long terminal repeat is the major competitive advantage of the virus being a prevalent strain. Front Microbiol. 2019;10:2842. https://doi.org/10.3389/fmicb.2019.02842 .
doi: 10.3389/fmicb.2019.02842 pubmed: 31921027 pmcid: 6923665
Su S, Cui N, Cui Z, Zhao P, Li Y, Ding J, et al. Complete genome sequence of a recombinant Marek's disease virus field strain with one reticuloendotheliosis virus long terminal repeat insert. J Virol. 2012;86(24):13818–9. https://doi.org/10.1128/JVI.02583-12 .
doi: 10.1128/JVI.02583-12 pubmed: 23166235 pmcid: 3503109
Li Y, Sun A, Su S, Zhao P, Cui Z, Zhu H. Deletion of the Meq gene significantly decreases immunosuppression in chickens caused by pathogenic Marek's disease virus. Virol J. 2011;8:2. https://doi.org/10.1186/1743-422X-8-2 .
doi: 10.1186/1743-422X-8-2 pubmed: 21205328 pmcid: 3024286
Dang L, Teng M, Li HW, Li HZ, Ma SM, Zhao P, et al. Dynamic changes in the splenic transcriptome of chickens during the early infection and Progress of Marek's disease. Sci Rep. 2017;7(1):11648. https://doi.org/10.1038/s41598-017-11304-y .
doi: 10.1038/s41598-017-11304-y pubmed: 28912500 pmcid: 5599560
Teng M, Yu ZH, Zhao P, Zhuang GQ, Wu ZX, Dang L, et al. Putative roles as oncogene or tumour suppressor of the mid-clustered microRNAs in Gallid alphaherpesvirus 2 (GaHV2) induced Marek's disease lymphomagenesis. J Gen Virol. 2017;98(5):1097–112. https://doi.org/10.1099/jgv.0.000786 .
doi: 10.1099/jgv.0.000786 pubmed: 28510513 pmcid: 5656797
Wang C, Wu R, Li FD, Liu L, Zhang XL, Zhao CL, et al. Expression patterns of prion protein gene in differential genotypes sheep: quantification using molecular beacon real-time RT-PCR. Virus Genes. 2011;42(3):457–62. https://doi.org/10.1007/s11262-011-0579-7 .
doi: 10.1007/s11262-011-0579-7 pubmed: 21318242
Feldman AT, Wolfe D. Tissue processing and hematoxylin and eosin staining. Methods Mol Biol. 2014;1180:31–43. https://doi.org/10.1007/978-1-4939-1050-2_3 .
doi: 10.1007/978-1-4939-1050-2_3 pubmed: 25015141
Yang Z, Zhou J, Zhu L, Chen A, Cheng Y. Label-free quantification proteomics analysis reveals acute hyper-osmotic responsive proteins in the gills of Chinese mitten crab (Eriocheir sinensis). Comp Biochem Physiol Part D Genomics Proteomics. 2022;43:101009. https://doi.org/10.1016/j.cbd.2022.101009 .
doi: 10.1016/j.cbd.2022.101009 pubmed: 35777161
Shen S, Kong J, Qiu Y, Yang X, Wang W, Yan L. Identification of core genes and outcomes in hepatocellular carcinoma by bioinformatics analysis. J Cell Biochem. 2019;120(6):10069–81. https://doi.org/10.1002/jcb.28290 .
doi: 10.1002/jcb.28290 pubmed: 30525236
Wang C, Zhao CL, Liu L, Wu R, Zhang XL. Expression patterns of Doppel in differential ovine PRNP genotypes: quantification using real-time RT-PCR. Genet Mol Res. 2015;14(4):12152–8. https://doi.org/10.4238/2015.October.9.3 .
doi: 10.4238/2015.October.9.3 pubmed: 26505363
Calnek BW. Marek's disease--a model for herpesvirus oncology. Crit Rev Microbiol. 1986;12(4):293–320. https://doi.org/10.3109/10408418509104432 .
doi: 10.3109/10408418509104432 pubmed: 3007026
Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90. https://doi.org/10.1038/sj.onc.1210421 .
doi: 10.1038/sj.onc.1210421 pubmed: 17496922
Orton RJ, Sturm OE, Vyshemirsky V, Calder M, Gilbert DR, Kolch W. Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J. 2005;392(Pt 2):249–61. https://doi.org/10.1042/BJ20050908 .
doi: 10.1042/BJ20050908 pubmed: 16293107 pmcid: 1316260
Subramaniam S, Johnston J, Preeyanon L, Brown CT, Kung HJ, Cheng HH. Integrated analyses of genome-wide DNA occupancy and expression profiling identify key genes and pathways involved in cellular transformation by a Marek's disease virus oncoprotein, meq. J Virol. 2013;87(16):9016–29. https://doi.org/10.1128/JVI.01163-13 .
doi: 10.1128/JVI.01163-13 pubmed: 23740999 pmcid: 3754031
Subramaniam S, Preeyanon L, Cheng HH. Transcriptional profiling of meq-dependent genes in Marek's disease resistant and susceptible inbred chicken lines. PLoS One. 2013;8(10):e78171. https://doi.org/10.1371/journal.pone.0078171 .
doi: 10.1371/journal.pone.0078171 pubmed: 24205146 pmcid: 3804455
Xuming H. Proteome, transcriptomics and natural immunity mechanism of chicken infected with RB1B strain of Marek's disease virus [D]. Yangzhou University; 2014.
Xu S, Xue C, Li J, Bi Y, Cao Y. Marek's disease virus type 1 microRNA miR-M3 suppresses cisplatin-induced apoptosis by targeting Smad2 of the transforming growth factor beta signal pathway. J Virol. 2011;85(1):276–85. https://doi.org/10.1128/JVI.01392-10 .
doi: 10.1128/JVI.01392-10 pubmed: 20962090
Deep G, Jain AK, Ramteke A, Ting H, Vijendra KC, Gangar SC, et al. SNAI1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin. Mol Cancer. 2014;13:37. https://doi.org/10.1186/1476-4598-13-37 .
doi: 10.1186/1476-4598-13-37 pubmed: 24565133 pmcid: 3937432
Lei Y, Huang K, Gao C, Lau QC, Pan H, Xie K, et al. Proteomics identification of ITGB3 as a key regulator in reactive oxygen species-induced migration and invasion of colorectal cancer cells. Mol Cell Proteomics. 2011;10(10):M110.005397. https://doi.org/10.1074/mcp.M110.005397 .
doi: 10.1074/mcp.M110.005397 pubmed: 21622897 pmcid: 3205852
Feng XX, Liu M, Yan W, Zhou ZZ, Xia YJ, Tu W, et al. β3 integrin promotes TGF-β1/H2O2/HOCl-mediated induction of metastatic phenotype of hepatocellular carcinoma cells by enhancing TGF-β1 signaling. PLoS One. 2013;8(11):e79857. https://doi.org/10.1371/journal.pone.0079857 .
doi: 10.1371/journal.pone.0079857 pubmed: 24260309 pmcid: 3832483
Deroide N, Li X, Lerouet D, Van Vré E, Baker L, Harrison J, et al. MFGE8 inhibits inflammasome-induced IL-1β production and limits postischemic cerebral injury. J Clin Invest. 2013;123(3):1176–81. https://doi.org/10.1172/JCI65167 .
doi: 10.1172/JCI65167 pubmed: 23454767 pmcid: 3582131
Peng LP. Regarding: MicroRNA-126 targeting PIK3R2 inhibits NSCLC A549 cell proliferation, migration, and invasion by regulation of PTEN/PI3K/AKT pathway. Clin Lung Cancer. 2021;22(3):e446–50. https://doi.org/10.1016/j.cllc.2020.06.009 .
doi: 10.1016/j.cllc.2020.06.009 pubmed: 32741637
Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168(6):960–76. https://doi.org/10.1016/j.cell.2017.02.004 .
doi: 10.1016/j.cell.2017.02.004 pubmed: 28283069 pmcid: 5394987
Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6(11):1122–8. https://doi.org/10.1038/ncb1183 .
doi: 10.1038/ncb1183 pubmed: 15467718
Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y. Targeting mTOR for cancer therapy. J Hematol Oncol. 2019;12(1):71. https://doi.org/10.1186/s13045-019-0754-1 .
doi: 10.1186/s13045-019-0754-1 pubmed: 31277692 pmcid: 6612215
Liu Q, Wang J, Tang M, Chen L, Qi X, Li J, et al. The overexpression of PXN promotes tumor progression and leads to radioresistance in cervical cancer. Future Oncol. 2018;14(3):241–53. https://doi.org/10.2217/fon-2017-0474 .
doi: 10.2217/fon-2017-0474 pubmed: 29318915
Xie J, Guo T, Zhong Z, Wang N, Liang Y, Zeng W, et al. ITGB1 drives hepatocellular carcinoma progression by modulating cell cycle process through PXN/YWHAZ/AKT pathways. Front Cell Dev Biol. 2021;9:711149. https://doi.org/10.3389/fcell.2021.711149 .
doi: 10.3389/fcell.2021.711149 pubmed: 34977001 pmcid: 8718767
Aktary Z, Pasdar M. Plakoglobin represses SATB1 expression and decreases in vitro proliferation, migration and invasion. PLoS One. 2013;8(11):e78388. https://doi.org/10.1371/journal.pone.0078388 .
doi: 10.1371/journal.pone.0078388 pubmed: 24260116 pmcid: 3832639
Birge RB, Kalodimos C, Inagaki F, Tanaka S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun Signal. 2009;7:13. https://doi.org/10.1186/1478-811X-7-13 .
doi: 10.1186/1478-811X-7-13 pubmed: 19426560 pmcid: 2689226
Feller SM, Knudsen B, Wong TW, Hanafusa H. Detection of SH3-binding proteins in total cell lysates with glutathione S-transferase-SH3 fusion proteins: SH3 blot assay. Methods Enzymol. 1995;255:369–78. https://doi.org/10.1016/s0076-6879(95)55039-9 .
doi: 10.1016/s0076-6879(95)55039-9 pubmed: 8524122
Matsuda M, Mayer BJ, Hanafusa H. Identification of domains of the v-crk oncogene product sufficient for association with phosphotyrosine-containing proteins. Mol Cell Biol. 1991;11(3):1607–13. https://doi.org/10.1128/mcb.11.3.1607-1613.1991 .
doi: 10.1128/mcb.11.3.1607-1613.1991 pubmed: 1705010 pmcid: 369454
Nishihara H, Tanaka S, Tsuda M, Oikawa S, Maeda M, Shimizu M, et al. Molecular and immunohistochemical analysis of signaling adaptor protein Crk in human cancers. Cancer Lett. 2002;180(1):55–61. https://doi.org/10.1016/s0304-3835(01)00763-7 .
doi: 10.1016/s0304-3835(01)00763-7 pubmed: 11911970
Li R, Peng C, Zhang X, Wu Y, Pan S, Xiao Y. Roles of Arf6 in cancer cell invasion, metastasis and proliferation. Life Sci. 2017;182:80–4. https://doi.org/10.1016/j.lfs.2017.06.008 .
doi: 10.1016/j.lfs.2017.06.008 pubmed: 28625359
Grossmann AH, Zhao H, Jenkins N, Zhu W, Richards JR, Yoo JH, et al. The small GTPase ARF6 regulates protein trafficking to control cellular function during development and in disease. Small GTPases. 2019;10(1):1–12. https://doi.org/10.1080/21541248.2016.1259710 .
doi: 10.1080/21541248.2016.1259710 pubmed: 28001501
Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in Cancer immunotherapy. Mol Cancer. 2020;19(1):145. https://doi.org/10.1186/s12943-020-01258-7 .
doi: 10.1186/s12943-020-01258-7 pubmed: 32972405 pmcid: 7513516
Karin M. NF-kappaB and cancer: mechanisms and targets. Mol Carcinog. 2006;45(6):355–61. https://doi.org/10.1002/mc.20217 .
doi: 10.1002/mc.20217 pubmed: 16673382
Bollrath J, Greten FR. IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep. 2009;10(12):1314–9. https://doi.org/10.1038/embor.2009.243 .
doi: 10.1038/embor.2009.243 pubmed: 19893576 pmcid: 2799209
Atkinson GP, Nozell SE, Benveniste ET. NF-kappaB and STAT3 signaling in glioma: targets for future therapies. Expert Rev Neurother. 2010;10(4):575–86. https://doi.org/10.1586/ern.10.21 .
doi: 10.1586/ern.10.21 pubmed: 20367209
Fan Y, Mao R, Yang J. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell. 2013;4(3):176–85. https://doi.org/10.1007/s13238-013-2084-3 .
doi: 10.1007/s13238-013-2084-3 pubmed: 23483479 pmcid: 4875500
DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature. 1997;388(6642):548–54. https://doi.org/10.1038/41493 .
doi: 10.1038/41493 pubmed: 9252186
Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, et al. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science. 1997;278(5339):860–6. https://doi.org/10.1126/science.278.5339.860 .
doi: 10.1126/science.278.5339.860 pubmed: 9346484
Prusiner SB. Prions. Proc Natl Acad Sci U S A. 1998;95(23):13363–83. https://doi.org/10.1073/pnas.95.23.13363 .
doi: 10.1073/pnas.95.23.13363 pubmed: 9811807 pmcid: 33918
Lim JH, Go G, Lee SH. PrPC regulates the Cancer stem cell properties via interaction with c-met in colorectal Cancer cells. Anticancer Res. 2021;41(7):3459–70. https://doi.org/10.21873/anticanres.15133 .
doi: 10.21873/anticanres.15133 pubmed: 34230141
Pan Y, Zhao L, Liang J, etc. Cellular prion protein promotes invasion and metastasis of gastric cancer. FASEB J. 2006;20(11):1886–8. https://doi.org/10.1096/fj.06-6138fje .
doi: 10.1096/fj.06-6138fje pubmed: 16877520
Li C, Yu S, Nakamura F, et al. Binding of pro-prion to filamin a disrupts cytoskeleton and correlates with poor prognosis in pancreatic cancer. J Clin Invest. 2009;119(9):2725–36. https://doi.org/10.1172/JCI39542 .
doi: 10.1172/JCI39542 pubmed: 19690385 pmcid: 2735930
Wenna Ai WR, Diao XL. PRNP gene SYBR green I double standard curve method for fluorescence quantification PCR assay and its preliminary application. Chinese veterinary. Science. 2013;43(10):881–6.
Hongwei Y. Pathological observation of MD-infected chickens and quantification of PRNP genes in diseased tissues [D]. Gansu Agricultural University; 2014.
Haq K, Brisbin JT, Thanthrige-Don N, Heidari M, Sharif S. Transcriptome and proteome profiling of host responses to Marek's disease virus in chickens. Vet Immunol Immunopathol. 2010;138(4):292–302. https://doi.org/10.1016/j.vetimm.2010.10.007 .
doi: 10.1016/j.vetimm.2010.10.007 pubmed: 21067815
Isenberg JS, Roberts DD. THBS1 (thrombospondin-1). Atlas Genet Cytogenet Oncol Haematol. 2020;24(8):291–9. https://doi.org/10.4267/2042/70774 .
doi: 10.4267/2042/70774 pubmed: 33244322 pmcid: 7687907
Sun Y, Shi P, Wu Q, Liu B, Yu Z, Jia H, et al. MiR-222-3p induced by hepatitis B virus promotes the proliferation and inhibits apoptosis in hepatocellular carcinoma by upregulating THBS1. Hum Cell. 2021;34(6):1788–99. https://doi.org/10.1007/s13577-021-00577-1 .
doi: 10.1007/s13577-021-00577-1 pubmed: 34273068
Xu G, Li J, Yu L. miR-19a-3p promotes tumor-relevant behaviors in bladder urothelial carcinoma via targeting THBS1. Comput Math Methods Med. 2021;28(2021):2710231. https://doi.org/10.1155/2021/2710231 .
doi: 10.1155/2021/2710231
Diao XL, Wu R, Liu L, et al. Expression patterns of Pr P gene during chicken embryo development. Asian J Animal Veterinar Adv. 2012;7(2):199–204.
doi: 10.3923/ajava.2012.199.204
Denesvre C. Marek's disease virus morphogenesis. Avian Dis. 2013;57(2 Suppl):340–50. https://doi.org/10.1637/10375-091612-Review.1 .
doi: 10.1637/10375-091612-Review.1 pubmed: 23901745
Yan L, Yang Y, Ma X, et al. Effect of two different drug-resistant Staphylococcus aureus strains on the physiological properties of MAC-T cells and their transcriptome analysis. Front Vet Sci. 2022;9:818928. https://doi.org/10.3389/fvets.2022.818928 .
doi: 10.3389/fvets.2022.818928 pubmed: 35812882 pmcid: 9263607

Auteurs

Chuan Wang (C)

College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China. wangchuan@gsau.edu.cn.

Yuanzi Liu (Y)

Shaanxi Meili-OH Animal Health Co., Ltd, Xi'an, 712034, PR China.

Yuze Yang (Y)

Beijing Animal Husbandry Station, Beijing, 100107, PR China.

Man Teng (M)

Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China.

Xuerui Wan (X)

College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.

Zixiang Wu (Z)

College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.

Zhao Zhang (Z)

College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China. zzhao0829@163.com.

Classifications MeSH