Enhancing Inhalation Drug Delivery: A Comparative Study and Design Optimization of a Novel Valved Holding Chamber.


Journal

Journal of biomechanical engineering
ISSN: 1528-8951
Titre abrégé: J Biomech Eng
Pays: United States
ID NLM: 7909584

Informations de publication

Date de publication:
06 Jan 2024
Historique:
received: 17 08 2023
accepted: 27 12 2023
medline: 6 1 2024
pubmed: 6 1 2024
entrez: 6 1 2024
Statut: aheadofprint

Résumé

This paper presents an innovative approach to the design optimization of valved holding chambers (VHCs), crucial devices for aerosol drug delivery. We present the design of an optimal cylindrical VHC body and introduce a novel valve based on particle impaction theory. The research combines computational simulations and physical experiments to assess the performance of various VHCs, with a special focus on the deposition patterns of medication particles within these devices. The methodology incorporates both experimental and simulation approaches to validate the reliability of the simulation. Emphasis is placed on the deposition patterns observed on the VHC walls and the classification of fine and large particles for salbutamol sulfate particles. The study reveals the superior efficacy of our valve design in separating particles compared to commercially available VHCs. In standard conditions, our valve design allows over 95% of particles under 7 µm to pass through while effectively filtering those larger than 8 µm. The optimized body design accomplishes a 60% particle mass flow fraction at the outlet and an average particle size reduction of 58.5%. When compared numerically in terms of size reduction, the optimal design outperforms the two commercially available VHCs selected. This study provides valuable insights into the optimization of VHC design, offering significant potential for improved aerosol drug delivery. Our findings demonstrate a new path forward for future studies, aiming to further optimize the design and performance of VHCs for enhanced pulmonary drug delivery.

Identifiants

pubmed: 38183225
pii: 1193870
doi: 10.1115/1.4064436
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1-14

Informations de copyright

Copyright © 2024 by ASME.

Auteurs

Shahab Azimi (S)

School of Mechatronic Systems Engineering, Simon Fraser University, 250 - 13450 102nd Avenue, Surrey, BC, Canada V3T 0A3.

Siamak Arzanpour (S)

School of Mechatronic Systems Engineering, Simon Fraser University, Room 4174, 250 - 13450 102nd Avenue, Surrey, BC, Canada V3T 0A3.

Classifications MeSH