Quantitative assessment of bone marrow infiltration and characterization of tumor burden using dual-layer spectral CT in patients with multiple myeloma.
bone marrow
dual energy CT
multiple myeloma
tumor burden
virtual non-calcium
Journal
Radiology and oncology
ISSN: 1581-3207
Titre abrégé: Radiol Oncol
Pays: Poland
ID NLM: 9317213
Informations de publication
Date de publication:
06 Jan 2024
06 Jan 2024
Historique:
received:
18
08
2023
accepted:
31
10
2023
medline:
7
1
2024
pubmed:
7
1
2024
entrez:
6
1
2024
Statut:
aheadofprint
Résumé
The aim of the study was to evaluate whether virtual calcium subtraction (VNCa) image extracted from dual-layer spectral CT could estimate bone marrow (BM) infiltration with MRI as the reference standard and characterize tumor burden in patients with multiple myeloma (MM). Forty-seven patients with newly diagnosed MM were retrospectively enrolled. They had undergone whole-body low-dose dual-layer spectral CT (DLCT) and whole-body MRI within one week. VNCa images with calcium-suppressed (CaSupp) indices ranging from 25 to 95 at an interval of 10 and apparent diffusion coefficient (ADC) maps were quantitatively analyzed on vertebral bodies L1-L5 at the central slice of images. The optimal combination was selected by correlation analysis between CT numbers and ADC values. Then, it was used to characterize tumor burden by correlation analysis and receiver operating characteristic (ROC) curves analysis, including plasma cell infiltration rate (PCIR), high serum-free light chains (SFLC) ratio and the high-risk cytogenetic (HRC) status. The most significant quantitative correlation between CT numbers of VNCa images and ADC values could be found at CaSupp index 85 for averaged L1-L5 (r = 0.612, p < 0.001). It allowed quantitative evaluation of PCIR (r = 0.835, p < 0.001). It could also anticipate high SFLC ratio and the HRC status with The VNCa measurements of averaged L1-L5 showed the highest correlation with ADC at CaSupp index 85. It could therefore be used as additional imaging biomarker for non-invasive assessment of tumor burden if ADC is not feasible.
Sections du résumé
BACKGROUND
BACKGROUND
The aim of the study was to evaluate whether virtual calcium subtraction (VNCa) image extracted from dual-layer spectral CT could estimate bone marrow (BM) infiltration with MRI as the reference standard and characterize tumor burden in patients with multiple myeloma (MM).
PATIENTS AND METHODS
METHODS
Forty-seven patients with newly diagnosed MM were retrospectively enrolled. They had undergone whole-body low-dose dual-layer spectral CT (DLCT) and whole-body MRI within one week. VNCa images with calcium-suppressed (CaSupp) indices ranging from 25 to 95 at an interval of 10 and apparent diffusion coefficient (ADC) maps were quantitatively analyzed on vertebral bodies L1-L5 at the central slice of images. The optimal combination was selected by correlation analysis between CT numbers and ADC values. Then, it was used to characterize tumor burden by correlation analysis and receiver operating characteristic (ROC) curves analysis, including plasma cell infiltration rate (PCIR), high serum-free light chains (SFLC) ratio and the high-risk cytogenetic (HRC) status.
RESULTS
RESULTS
The most significant quantitative correlation between CT numbers of VNCa images and ADC values could be found at CaSupp index 85 for averaged L1-L5 (r = 0.612, p < 0.001). It allowed quantitative evaluation of PCIR (r = 0.835, p < 0.001). It could also anticipate high SFLC ratio and the HRC status with
CONCLUSIONS
CONCLUSIONS
The VNCa measurements of averaged L1-L5 showed the highest correlation with ADC at CaSupp index 85. It could therefore be used as additional imaging biomarker for non-invasive assessment of tumor burden if ADC is not feasible.
Identifiants
pubmed: 38183278
pii: raon-2024-0003
doi: 10.2478/raon-2024-0003
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024 Xing Xiong et al., published by Sciendo.
Références
Kazandjian D. Multiple myeloma epidemiology and survival: a unique malignancy. Semin Oncol 2016; 43: 676–81. doi: 10.1053/j.seminoncol.2016.11.004
doi: 10.1053/j.seminoncol.2016.11.004
Panaroni C, Yee AJ, Raje NS. Myeloma and bone disease. Curr Osteoporos Rep 2017; 15: 483–98. doi: 10.1007/s11914-017-0397-5
doi: 10.1007/s11914-017-0397-5
O’Donnell EK, Raje NS. Myeloma bone disease: pathogenesis and treatment. Clin Adv Hematol Oncol 2017; 15: 285–95. PMID: 28591104
pubmed: 28591104
Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014; 15: e538–48. doi: 10.1016/S1470-2045(14)70442-5
doi: 10.1016/S1470-2045(14)70442-5
Duvauferrier R, Valence M, Patrat-Delon S, Brillet E, Niederberger E, Marchand A, et al. Current role of CT and whole body MRI in multiple myeloma. Diagn Interv Imaging 2013; 94: 169–83. doi: 10.1016/j.diii.2012.12.001
doi: 10.1016/j.diii.2012.12.001
Dimopoulos M, Terpos E, Comenzo RL, Tosi P, Beksac M, Sezer O, et al. International Myeloma Working Group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple myeloma. Leukemia 2009; 23: 1545–56. doi: 10.1038/leu.2009.89
doi: 10.1038/leu.2009.89
Durie BG, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 1975; 36: 842–54. doi: 10.1002/1097-0142(197509)36:3<842::aid-cncr2820360303>3.0.co;2-u
doi: 10.1002/1097-0142(197509)36:3<842::aid-cncr2820360303>3.0.co;2-u
Portet M, Owens E, Howlett D. The use of whole-body MRI in multiple myeloma. Clin Med 2019; 19: 355–6. doi: 10.7861/clinmedicine.19-4-355
doi: 10.7861/clinmedicine.19-4-355
Kosmala A, Weng AM, Heidemeier A, Krauss B, Knop S, Bley TA, et al. Multiple myeloma and dual-energy CT: diagnostic accuracy of virtual non-calcium technique for detection of bone marrow infiltration of the spine and pelvis. Radiology 2018; 286: 205–13. doi: 10.1148/radiol.2017170281
doi: 10.1148/radiol.2017170281
Hillengass J, Usmani S, Rajkumar SV, Durie BGM, Mateos MV, Lonial S, et al. International Myeloma Working Group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol 2019; 20: e302–e312. doi: 10.1016/S1470-2045(19)30309-2
doi: 10.1016/S1470-2045(19)30309-2
Shah LM, Hanrahan CJ. MRI of spinal bone marrow: part I, techniques and normal age-related appearances. AJR Am J Roentgenol 2011; 197: 1298–308. doi: 10.2214/AJR.11.7005
doi: 10.2214/AJR.11.7005
Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology 2011; 261: 700–18. doi: 10.1148/radiol.11110474
doi: 10.1148/radiol.11110474
Cavo M, Terpos E, Nanni C, Moreau P, Lentzsch S, Zweegman S, et al. Role of (18)F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group. Lancet Oncol 2017; 18: e206–e217. doi: 10.1016/S1470-2045(17)30189-4
doi: 10.1016/S1470-2045(17)30189-4
Fervers P, Fervers F, Kottlors J, Lohneis P, Pollman-Schweckhorst P, Zaytoun H, et al. Feasibility of artificial intelligence-supported assessment of bone marrow infiltration using dual-energy computed tomography in patients with evidence of monoclonal protein - a retrospective observational study. Eur Radiol 2022; 32: 2901–11. doi: 10.1007/s00330-021-08419-2
doi: 10.1007/s00330-021-08419-2
Fervers P, Glauner A, Gertz R, Täger P, Kottlors J, Maintz D, et al. Virtual calcium-suppression in dual energy computed tomography predicts metabolic activity of focal MM lesions as determined by fluorodeoxyglucose positron-emission-tomography. Eur J Radiol 2021; 135: 109502. doi: 10.1016/j.ejrad.2020.109502
doi: 10.1016/j.ejrad.2020.109502
Brandelik SC, Skornitzke S, Mokry T, Sauer S, Stiller W, Nattenmüller J, et al. Quantitative and qualitative assessment of plasma cell dyscrasias in dual-layer spectral CT. Eur Radiol 2021; 31: 7664–73. doi: 10.1007/s00330-021-07821-0
doi: 10.1007/s00330-021-07821-0
Moulopoulos LA, Koutoulidis V, Hillengass J, Zamagni E, Aquerreta JD, Roche CL, et al. Recommendations for acquisition, interpretation and reporting of whole body low dose CT in patients with multiple myeloma and other plasma cell disorders: a report of the IMWG Bone Working Group. Blood Cancer J 2018; 8: 95. doi: 10.1038/s41408-018-0124-1
doi: 10.1038/s41408-018-0124-1
Reinert CP, Krieg E, Esser M, Nikolaou K, Bösmüller H, Horger M. Role of computed tomography texture analysis using dual-energy-based bone marrow imaging for multiple myeloma characterization: comparison with histology and established serologic parameters. Eur Radiol 2021; 31: 2357–67. doi: 10.1007/s00330-020-07320-8
doi: 10.1007/s00330-020-07320-8
Hu C, Zhang Y, Xiong X, Meng Q, Yao F, Ye A, et al. Quantitative evaluation of bone marrow infiltration using dual-energy spectral computed tomography in patients with multiple myeloma. J Xray Sci Technol 2021; 29: 463–75. doi: 10.3233/XST-200811
doi: 10.3233/XST-200811
Mosebach J, Thierjung H, Schlemmer HP, Delorme S. Multiple myeloma guidelines and their recent updates: implications for imaging. Rofo 2019; 191: 998–1009. doi: 10.1055/a-0897-3966
doi: 10.1055/a-0897-3966
Cowan AJ, Green DJ, Kwok M, Lee S, Coffey DG, Holmberg LA, et al. Diagnosis and management of multiple myeloma: a review. JAMA 2022; 327: 464–77. doi: 10.1001/jama.2022.0003
doi: 10.1001/jama.2022.0003
Thomas C, Schabel C, Krauss B, Weisel K, Bongers M, Claussen CD, et al. Dual-energy CT: virtual calcium subtraction for assessment of bone marrow involvement of the spine in multiple myeloma. AJR Am J Roentgenol 2015; 204: W324–31. doi: 10.2214/AJR.14.12613
doi: 10.2214/AJR.14.12613
Ekert K, Hinterleitner C, Baumgartner K, Fritz J, Horger M. Extended texture analysis of non-enhanced whole-body MRI image data for response assessment in multiple myeloma patients undergoing systemic therapy. Cancers 2020; 12: 761. doi: 10.3390/cancers12030761
doi: 10.3390/cancers12030761
Yu Z, Leng S, Jorgensen SM, Li Z, Gutjahr R, Chen B, et al. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array. Phys Med Biol 2016; 61: 1572–95. doi: 10.1088/0031-9155/61/4/1572
doi: 10.1088/0031-9155/61/4/1572
Koutoulidis V, Terpos E, Papanikolaou N, Fontara S, Seimenis I, Gavriatopoulou M, et al. Comparison of MRI features of fat fraction and ADC for early treatment response assessment in participants with multiple myeloma. Radiology 2022; 304: 137–44. doi: 10.1148/radiol.211388
doi: 10.1148/radiol.211388
Sidiqi MH, Aljama M, Kumar SK, Jevremovic D, Buadi FK, Warsame R, et al. The role of bone marrow biopsy in patients with plasma cell disorders: should all patients with a monoclonal protein be biopsied? Blood Cancer J 2020; 10: 52. doi: 10.1038/s41408-020-0319-0
doi: 10.1038/s41408-020-0319-0
Dupuis MM, Tuchman SA. Non-secretory multiple myeloma: from biology to clinical management. Onco Targets Ther 2016; 9: 7583–90. doi: 10.2147/OTT.S122241
doi: 10.2147/OTT.S122241
Wale A, Pawlyn C, Kaiser M, Messiou C. Frequency, distribution and clinical management of incidental findings and extramedullary plasmacytomas in whole body diffusion weighted magnetic resonance imaging in patients with multiple myeloma. Haematologica 2016; 101: e142–4. doi: 10.3324/haematol.2015.139816
doi: 10.3324/haematol.2015.139816
Hamdaoui H, Benlarroubia O, Ait Boujmia OK, Mossafa H, Ouldim K, Belkhayat A, et al. Cytogenetic and FISH analysis of 93 multiple myeloma Moroccan patients. Mol Genet Genomic Med 2020; 8: e1363. doi: 10.1002/mgg3.1363
doi: 10.1002/mgg3.1363
Saxe D, Seo EJ, Bergeron MB, Han JY. Recent advances in cytogenetic characterization of multiple myeloma. Int J Lab Hematol 2019; 41: 5–14. doi: 10.1111/ijlh.12882
doi: 10.1111/ijlh.12882
Zhao XQ, Zhao SY, Chen WX, Liu XW, Yan HX, Lou YJ. Correlation between clinical factors and prognosis in newly diagnosed multiple myeloma. J Coll Physicians Surg Pak 2020; 30: 601–5. doi: 10.29271/jcpsp.2020.06.601
doi: 10.29271/jcpsp.2020.06.601
Usmani SZ, Crowley J, Hoering A, Mitchell A, Waheed S, Nair B, et al. Improvement in long-term outcomes with successive total therapy trials for multiple myeloma: are patients now being cured? Leukemia 2013; 27: 226–32. doi: 10.1038/leu.2012.160
doi: 10.1038/leu.2012.160
Ross FM, Avet-Loiseau H, Ameye G, Gutiérrez NC, Liebisch P, O’Connor S, et al. Report from the European Myeloma Network on interphase FISH in multiple myeloma and related disorders. Haematologica 2012; 97: 1272–7. doi: 10.3324/haematol.2011.056176
doi: 10.3324/haematol.2011.056176