Cyclometalated ruthenium complexes overcome cisplatin resistance through PI3K/mTOR/Nrf2 signaling pathway.
A549/DDP
Cyclometalated ruthenium complexes
PI3K/mTOR/Nrf2
cisplatin resistance
Journal
Metallomics : integrated biometal science
ISSN: 1756-591X
Titre abrégé: Metallomics
Pays: England
ID NLM: 101478346
Informations de publication
Date de publication:
05 Jan 2024
05 Jan 2024
Historique:
medline:
7
1
2024
pubmed:
7
1
2024
entrez:
6
1
2024
Statut:
aheadofprint
Résumé
Currently, cisplatin resistance remains a primary clinical obstacle in the successful treatment of NSCLC. Here, we designed, synthesized and characterized two novel cyclometalated Ru(II) complexes, [Ru(bpy)2(1-Ph-7-OCH3-IQ)] (PF6) (bpy = 2,2'-bipyridine, IQ = isoquinoline, RuIQ7) and [Ru(bpy)2(1-Ph-6,7-(OCH3)2-IQ)] (PF6) (RuIQ8). As experimental controls, we prepared complex [Ru(bpy)2(1-Ph-IQ)](PF6) (RuIQ6) lacking a methoxy group in the main ligand. Significantly, complexes RuIQ6-8 displayed higher in vitro cytotoxicity when compared to ligands, precursor cis-[Ru(bpy)2Cl2], and clinical cisplatin. Mechanistic investigations revealed that RuIQ6-8 could inhibit cell proliferation by downregulating the phosphorylation levels of Akt and mTOR proteins, consequently affecting the rapid growth of resistant cells A549/DDP. Moreover, the results from qRT-PCR demonstrated that these complexes could directly suppress the transcription of the Nrf2 gene, leading to the inhibition of downstream MRP1 protein expression and effectively overcoming cisplatin resistance. Furthermore, the relationship between the chemical structures of these three complexes and their anticancer activity, ability to induce cell apoptosis, and their efficacy in overcoming cisplatin resistance has been thoroughly examined and discussed. Notably, the toxicity test conducted on zebrafish embryos indicated that the three Ru-IQ complexes displayed favorable safety profiles. Consequently, the potential of these developed compounds as innovative therapeutic agents for the efficient and low-toxic treatment of NSCLC appears highly promising.
Identifiants
pubmed: 38183290
pii: 7512204
doi: 10.1093/mtomcs/mfae002
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© The Author(s) 2024. Published by Oxford University Press.