Potential role of camel, mare milk, and their products in inflammatory rheumatic diseases.

Camel milk Health benefits Mare milk Milk products Rheumatic diseases

Journal

Rheumatology international
ISSN: 1437-160X
Titre abrégé: Rheumatol Int
Pays: Germany
ID NLM: 8206885

Informations de publication

Date de publication:
06 Jan 2024
Historique:
received: 01 11 2023
accepted: 01 12 2023
medline: 7 1 2024
pubmed: 7 1 2024
entrez: 6 1 2024
Statut: aheadofprint

Résumé

Milk and dairy products serve as a significant dietary component for people all over the world. Milk is a source of essential nutrients such as carbohydrates, protein, fats, and water that support newborns' growth, development, and physiological processes. Milk contains various essential biological compounds that contribute to overall health and well-being. These compounds are crucial in immune system regulation, bone health, and gut microbiota. Milk and dairy products are primarily from cows, buffalos, goats, and sheep. Recently, there has been a notable increase in camel and mare milk consumption and its associated products due to an increasing attraction to ethnic cuisines and a greater awareness of food biodiversity. Camel and mare milk possess diverse nutritional and therapeutic properties, displaying potential functional foods. Camel milk has been linked to various health advantages, encompassing antihypertensive, antidiabetic, antiallergic, anticarcinogenic, antioxidant, and immunomodulatory properties. Camel milk has exhibited notable efficacy in mitigating inflammation and oxidative stress, potentially offering therapeutic benefits for inflammatory disorders. Nevertheless, although extensively recorded, the potential health benefits of mare's milk have yet to be investigated, including its impact on inflammatory conditions. This article highlights the therapeutic potential of camel and mare milk and its derived products in treating inflammatory rheumatic disorders, specifically focusing on their anti-inflammatory and immune-regulatory capabilities. These alternative types of milk, which do not come from cows, offer potential avenues for investigating innovative strategies to regulate and reduce inflammatory conditions.

Identifiants

pubmed: 38183445
doi: 10.1007/s00296-023-05516-x
pii: 10.1007/s00296-023-05516-x
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

OECD, FAO (2023) OECD-FAO Agricultural Outlook 2023–2032. OECD Publishing, Paris. https://doi.org/10.1787/08801ab7-en . Accessed 3 Oct 2023
doi: 10.1787/08801ab7-en
Muthukumaran MS, Mudgil P, Baba WN, Ayoub MA, Maqsood S (2023) A comprehensive review on health benefits, nutritional composition and processed products of camel milk. Food Rev Int 39:3080–3116. https://doi.org/10.1080/87559129.2021.2008953
doi: 10.1080/87559129.2021.2008953
FAOSTAT (2023) Live Animal, Livestock Primary, Livestock Processed, https://data.apps.fao.org/catalog/dataset/live-animals-national-global-annual . Accessed 3 October 2023
Faccia M, D’Alessandro AG, Summer A, Hailu Y (2020) Milk products from minor dairy species: A review. Animals 10:1260. https://doi.org/10.3390/ani10081260
doi: 10.3390/ani10081260 pubmed: 32722331 pmcid: 7460022
Alichanidis E, Moatsou G, Polychroniadou A (2016) Composition and properties of non-cow milk and products. In: Tsakalidou E, Papadimitriou K (eds) Non-bovine milk and milk products. Elsevier, London, pp 81–116
Faye B (2016) Food security and the role of local communities in non-cow milk production. In: Tsakalidou E, Papadimitriou K (eds) Non-bovine milk and milk products. Elsevier, London, pp 1–13
Tsakalidou E, Papadimitriou K (2016) Non-bovine milk and milk products. Elsevier, London
Ranadheera C, Evans C, Baines SK, Balthazar CF, Cruz AG, Esmerino EA, Freitas MQ, Pimentel TC, Wittwer A, Naumovski N (2019) Probiotics in goat milk products: Delivery capacity and ability to improve sensory attributes. Compr Rev Food Sci Food Saf 18:867–882. https://doi.org/10.1111/1541-4337.12447
doi: 10.1111/1541-4337.12447 pubmed: 33337004
Popescu A, Marcuta A, Marcuta L, Tindeche C (2021) Trends In Goats'livestock And Goat Milk, Meat And Cheese Production In The World In The Period 1990–2019-A Statistical Approach. Scientific Papers: Management, Economic Engineering in Agriculture & Rural Development 21:647–653. ISSN 2284–7995, E-ISSN 2285–3952
Bekhit A, Ahmed I, Al-Juhaimi F (2022) Non-Bovine Milk: Sources and Future Prospects. Foods 11:1967. https://doi.org/10.3390/foods11131967
doi: 10.3390/foods11131967 pubmed: 35804782 pmcid: 9266239
Mirmiran P, Ejtahed H-S, Angoorani P, Eslami F, Azizi F (2017) Camel milk has beneficial effects on diabetes mellitus: A systematic review. I Int J Endocrinol Metab 15:e42150. https://doi.org/10.5812/ijem.42150
doi: 10.5812/ijem.42150 pubmed: 29026408
Konuspayeva GS (2020) Camel milk composition and nutritional value. In: OA Alhaj, B Faye, and RP Agrawal (eds) Handbook of research on health and environmental benefits of camel products, IGI Global, Hershey, pp 15–40
Mati A, Senoussi-Ghezali C, Zennia SSA, Almi-Sebbane D, El-Hatmi H, Girardet J-M (2017) Dromedary camel milk proteins, a source of peptides having biological activities–A review. Int Dairy J 73:25–37. https://doi.org/10.1016/j.idairyj.2016.12.001
doi: 10.1016/j.idairyj.2016.12.001
Mansour AA, Nassan MA, Saleh OM, Soliman MM (2017) Protective effect of camel milk as anti-diabetic supplement: Biochemical, molecular and immunohistochemical study. Afr J Tradit Complement Altern Med 14:108–119. https://doi.org/10.21010/ajtcam.v14i4.13
doi: 10.21010/ajtcam.v14i4.13 pubmed: 28638873 pmcid: 5471457
Kushugulova A, Kozhakhmetov S, Sattybayeva R, Nurgozhina A, Ziyat A, Yadav H, Marotta F (2018) Mare’s milk as a prospective functional product. Funct Foods Health Dis 8:548–554. https://doi.org/10.31989/ffhd.v8i11.528
doi: 10.31989/ffhd.v8i11.528
Bimbetov B, Zhangabylov A, Aitbaeva S, Benberin V, Zollmann H, Musaev A, Rakhimzhanova M, Esnazarova G, Bakytzhanuly A, Malaeva N (2019) Mare’s milk: Therapeutic and dietary properties. Bull Nat Acad Sci Repub Kazakhstan 3:52–58
doi: 10.32014/2019.2518-1467.68
Gasparyan AY, Ayvazyan L, Blackmore H, Kitas GD (2011) Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. Rheumatol Int 31:1409–1417. https://doi.org/10.1007/s00296-011-1999-3
doi: 10.1007/s00296-011-1999-3 pubmed: 21800117
Ho TM, Zou Z, Bansal N (2022) Camel milk: A review of its nutritional value, heat stability, and potential food products. Food Res Int 153:110870. https://doi.org/10.1016/j.foodres.2021.110870
doi: 10.1016/j.foodres.2021.110870 pubmed: 35227464
Nagy P, Juhasz J (2016) Review of present knowledge on machine milking and intensive milk production in dromedary camels and future challenges. Trop Anim Health Prod 48:915–926. https://doi.org/10.1007/s11250-016-1036-3
doi: 10.1007/s11250-016-1036-3 pubmed: 26992732
Seifu E (2022) Recent advances on camel milk: Nutritional and health benefits and processing implications—A review. AIMS Agric Food 7:777–804. https://doi.org/10.3934/agrfood.2022048
doi: 10.3934/agrfood.2022048
Faye B (2015) Role, distribution and perspective of camel breeding in the third millennium economies. Emir J Food Agric 27:318–327. https://doi.org/10.9755/ejfa.v27i4.19906
doi: 10.9755/ejfa.v27i4.19906
Swelum AA, El-Saadony MT, Abdo M, Ombarak RA, Hussein EO, Suliman G, Alhimaidi AR, Ammari AA, Ba-Awadh H, Taha AE (2021) Nutritional, antimicrobial and medicinal properties of Camel’s milk: A review. Saudi J Biol Sci 28:3126–3136. https://doi.org/10.1016/j.sjbs.2021.02.057
doi: 10.1016/j.sjbs.2021.02.057 pubmed: 34025186 pmcid: 8117040
Khan MZ, Xiao J, Ma Y, Ma J, Liu S, Khan A, Khan JM, Cao Z (2021) Research development on anti-microbial and antioxidant properties of camel milk and its role as an anti-cancer and anti-hepatitis agent. Antioxidants (Basel) 10:788. https://doi.org/10.3390/antiox10050788
doi: 10.3390/antiox10050788 pubmed: 34067516
AlKurd R, Hanash N, Khalid N, Abdelrahim DN, Khan MA, Mahrous L, Radwan H, Naja F, Madkour M, Obaideen K (2022) Effect of camel milk on glucose homeostasis in patients with diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutrients 14:1245. https://doi.org/10.3390/nu14061245
doi: 10.3390/nu14061245 pubmed: 35334901 pmcid: 8954674
Shaban AM, Raslan M, Sharawi ZW, Abdelhameed MS, Hammouda O, El-Masry HM, Elsayed KN, El-Magd MA (2023) Antibacterial, Antifungal, and Anticancer Effects of Camel Milk Exosomes: An In Vitro Study. Vet Sci 10:124. https://doi.org/10.3390/vetsci10020124
doi: 10.3390/vetsci10020124 pubmed: 36851428 pmcid: 9963947
Arab HH, Ashour AM, Alqarni AM, Arafa E-SA, Kabel AM (2021) Camel milk mitigates cyclosporine-induced renal damage in rats: targeting p38/ERK/JNK MAPKs, NF-κB, and matrix metalloproteinases. Biology 10:442. https://doi.org/10.3390/biology10050442
doi: 10.3390/biology10050442 pubmed: 34067576 pmcid: 8156933
Benmeziane-Derradji F (2021) Evaluation of camel milk: gross composition—a scientific overview. Trop Anim Health Prod 53:308. https://doi.org/10.1007/s11250-021-02689-0
doi: 10.1007/s11250-021-02689-0 pubmed: 33961132
Arain MA, Khaskheli GB, Shah AH, Marghazani IB, Barham GS, Shah QA, Khand FM, Buzdar JA, Soomro F, Fazlani SA (2022) Nutritional significance and promising therapeutic/medicinal application of camel milk as a functional food in human and animals: A comprehensive review. Anim Biotechnol 34:1988–2005. https://doi.org/10.1080/10495398.2022.2059490
doi: 10.1080/10495398.2022.2059490 pubmed: 35389299
Khatoon H, Najam R (2017) Bioactive components in camel milk: Their nutritive value and therapeutic application. In: Watson RR, Collier RJ, Preedy VR (eds) Nutrients in Dairy and their Implications on Health and Disease. Elsevier, London, pp 377–387
doi: 10.1016/B978-0-12-809762-5.00029-2
Jilo K, Tegegne D (2016) Chemical composition and medicinal values of camel milk. Int J Res Stud Biosci 4:13–25. ISSN 2349–0357
Konuspayeva G, Faye B, Loiseau G (2009) The composition of camel milk: a meta-analysis of the literature data. J Food Compos Anal 22:95–101. https://doi.org/10.1016/j.jfca.2008.09.008
doi: 10.1016/j.jfca.2008.09.008
Meena S, Rajput Y, Sharma R (2014) Comparative fat digestibility of goat, camel, cow and buffalo milk. Int Dairy J 35:153–156. https://doi.org/10.1016/j.idairyj.2013.11.009
doi: 10.1016/j.idairyj.2013.11.009
Izadi A, Khedmat L, Mojtahedi SY (2019) Nutritional and therapeutic perspectives of camel milk and its protein hydrolysates: A review on versatile biofunctional properties. J Funct Foods 60:103441. https://doi.org/10.1016/j.jff.2019.103441
doi: 10.1016/j.jff.2019.103441
Cardoso RR, Santos R, Cardoso C, Carvalho M (2010) Consumption of camel’s milk by patients intolerant to lactose. A preliminary study. Rev Alerg Mex 57:26–32 (PMID: 20857626)
pubmed: 20857626
Khalesi M, Salami M, Moslehishad M, Winterburn J, Moosavi-Movahedi AA (2017) Biomolecular content of camel milk: A traditional superfood towards future healthcare industry. Trends Food Sci Technol 62:49–58. https://doi.org/10.1016/j.tifs.2017.02.004
doi: 10.1016/j.tifs.2017.02.004
Zhao D-b, Bai Y-h, Niu Y-w (2015) Composition and characteristics of Chinese Bactrian camel milk. Small Rumin Res 127:58–67. https://doi.org/10.1016/j.smallrumres.2015.04.008
doi: 10.1016/j.smallrumres.2015.04.008
Kamal M, Karoui R (2017) Monitoring of mild heat treatment of camel milk by front-face fluorescence spectroscopy. LWT - Food Sci Technol 79:586–593. https://doi.org/10.1016/j.lwt.2016.11.013
doi: 10.1016/j.lwt.2016.11.013
Konuspayeva G, Faye B (2021) Recent advances in camel milk processing. Animals 11:1045
doi: 10.3390/ani11041045 pubmed: 33917722 pmcid: 8068116
Seifu E (2023) Camel milk products: innovations, limitations and opportunities. Food Prod Process and Nutr 5:1–20. https://doi.org/10.1186/s43014-023-00130-7
doi: 10.1186/s43014-023-00130-7
Berhe T, Seifu E, Ipsen R, Kurtu MY, Hansen EB (2017) Processing challenges and opportunities of camel dairy products. Int J Food Sci 2017:9061757. https://doi.org/10.1155/2017/9061757
doi: 10.1155/2017/9061757 pubmed: 29109953 pmcid: 5646346
Salimei E, Park Y (2017) Mare milk. In: Park YW, Haenlein GFW, Wendorff WL (eds) Handbook of Milk of Non-Bovine Mammals, 2nd edn. Wiley, New York, pp 369–408
doi: 10.1002/9781119110316.ch5
Pieszka M, Łuszczyński J, Zamachowska M, Augustyn R, Długosz B, Hędrzak M (2016) Is mare milk an appropriate food for people?: a review. Ann Anim Sci 16:33–51. https://doi.org/10.1515/aoas-2015-0041
doi: 10.1515/aoas-2015-0041
Kondybayev A, Loiseau G, Achir N, Mestres C, Konuspayeva G (2021) Fermented mare milk product (Qymyz, Koumiss). Int Dairy J 119:105065. https://doi.org/10.1016/j.idairyj.2021.105065
doi: 10.1016/j.idairyj.2021.105065
El-Salam MA, El-Shibiny S (2013) Bioactive peptides of buffalo, camel, goat, sheep, mare, and yak milks and milk products. Food Rev Int 29:1–23. https://doi.org/10.1080/87559129.2012.692137
doi: 10.1080/87559129.2012.692137
Romaniuk K, Majszyk-Świątek M, Kryszak K, Danielewicz A, Andraszek K (2019) Alternative use of mare milk. Folia Pomer Univ Technol Stetin Agric Aliment Pisc Zootech 348:121–130.
doi: 10.21005/AAPZ2019.49.1.13
Fotschki J, Szyc A, Laparra J, Markiewicz L, Wróblewska B (2016) Immune-modulating properties of horse milk administered to mice sensitized to cow milk. J Dairy Sci 99:9395–9404. https://doi.org/10.3168/jds.2016-11499
doi: 10.3168/jds.2016-11499 pubmed: 27771084
Shaikh A, Mehta B, Jana AH (2022) Chemistry, nutritional properties and application of Mare’s milk: A review. Agric Rev 43:355–361. https://doi.org/10.18805/ag.R-2232
doi: 10.18805/ag.R-2232
Musaev A, Sadykova S, Anambayeva A, Saizhanova M, Balkanay G, Kolbaev M (2021) Mare’s milk: Composition, properties, and application in medicine. Arch Razi Inst 76:1125–1135. https://doi.org/10.22092/ari.2021.355834.1725
doi: 10.22092/ari.2021.355834.1725 pubmed: 35096348 pmcid: 8790991
Claeys W, Verraes C, Cardoen S, De Block J, Huyghebaert A, Raes K, Dewettinck K, Herman L (2014) Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control 42:188–201. https://doi.org/10.1016/j.foodcont.2014.01.045
doi: 10.1016/j.foodcont.2014.01.045
Uniacke-Lowe T, Huppertz T, Fox PF (2010) Equine milk proteins: chemistry, structure and nutritional significance. Int Dairy J 20:609–629. https://doi.org/10.1016/j.idairyj.2010.02.007
doi: 10.1016/j.idairyj.2010.02.007
Guha S, Sharma H, Deshwal GK, Rao PS (2021) A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species. Food Prod Process and Nutr 3:1–21. https://doi.org/10.1186/s43014-020-00045-7
doi: 10.1186/s43014-020-00045-7
Miraglia N, Salimei E, Fantuz F (2020) Equine milk production and valorization of marginal areas—A review. Animals 10:353. https://doi.org/10.3390/ani10020353
doi: 10.3390/ani10020353 pubmed: 32098374 pmcid: 7070972
Siddiqui SA, Salman SHM, Redha AA, Zannou O, Chabi IB, Oussou KF, Bhowmik S, Nirmal NP, Maqsood S (2023) Physicochemical and nutritional properties of different non-bovine milk and dairy products: A review. Int Dairy J 148:105790. https://doi.org/10.1016/j.idairyj.2023.105790
doi: 10.1016/j.idairyj.2023.105790
Yakunin AV, Sinyavskiy YA, Ibraimov YS (2017) Assessment of the nutritional value of mare’s milk and fermented mare’s milk products and the possibility of their use in baby food. Curr Pediatr 16:235–240
doi: 10.15690/vsp.v16i3.1734
Jokar M, Jokar M (2018) Prevalence of inflammatory rheumatic diseases in a rheumatologic outpatient clinic: analysis of 12626 cases. Rheum Res 3:21–27. https://doi.org/10.22631/RR.2017.69997.1037
doi: 10.22631/RR.2017.69997.1037
Saas P, Toussirot E, Bogunia-Kubik K (2022) Recent advances in potential biomarkers for rheumatic diseases and in cell-based therapies in the management of inflammatory rheumatic diseases. Front Immunol 12:836119.  https://doi.org/10.3389/fimmu.2021.836119
doi: 10.3389/fimmu.2021.836119 pubmed: 36389733 pmcid: 9651061
Ballestar E, Li T (2017) New insights into the epigenetics of inflammatory rheumatic diseases. Nat Rev Rheumatol 13:593–605. https://doi.org/10.1038/nrrheum.2017.147
doi: 10.1038/nrrheum.2017.147 pubmed: 28905855
Faraz A (2020) Composition of camel milk: a blessing for health. Ann Public Health Epidemiol 1:1–4. https://doi.org/10.33552/APHE.2020.01.000509
doi: 10.33552/APHE.2020.01.000509
Abd El-Aziz M, Kassem JM, Aasem FM, Abbas HM (2022) Physicochemical properties and health benefits of camel milk and its applications in dairy products: A review. Egypt J Chem 65:101–118. https://doi.org/10.1016/j.idairyj.2023.105790
doi: 10.1016/j.idairyj.2023.105790
Alkhulaifi MM, Alosaimi MM, Khan MS, Tabrez S, Shaik GM, Alokail MS, Hassan MA, Awadalla ME, Husain FM (2023) Assessment of Broad-Spectrum Antimicrobial, Antibiofilm, and Anticancer Potential of Lactoferrin Extracted from Camel Milk. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-023-04579-7
doi: 10.1007/s12010-023-04579-7 pubmed: 37418128
Arab HH, Salama SA, Maghrabi IA (2018) Camel milk ameliorates 5-fluorouracil-induced renal injury in rats: targeting MAPKs, NF-κB and PI3K/Akt/eNOS pathways. Cell Physiol Biochem 46:1628–1642. https://doi.org/10.1159/000489210
doi: 10.1159/000489210 pubmed: 29694984
Abd-Elhakim YM, El-Sharkawy NI, Mohammed HH, Ebraheim LL, Shalaby MA (2020) Camel milk rescues neurotoxic impairments induced by fenpropathrin via regulating oxidative stress, apoptotic, and inflammatory events in the brain of rats. Food Chem Toxicol 135:111055. https://doi.org/10.1016/j.fct.2019.111055
doi: 10.1016/j.fct.2019.111055 pubmed: 31838190
Arab HH, Salama SA, Abdelghany TM, Omar HA, Arafa E-SA, Alrobaian MM, Maghrabi IA (2017) Camel milk attenuates rheumatoid arthritis via inhibition of mitogen activated protein kinase pathway. Cell Physiol Biochem 43:540–552. https://doi.org/10.1159/000480527
doi: 10.1159/000480527 pubmed: 28930753
Badkook MM (2013) Fermented camel milk reduces inflammation in rats fed a high-fat diet. Int J Health Sci Res 3:7–17. ISSN: 2249–9571
Alhaider AA, Abdel Gader AGM, Almeshaal N, Saraswati S (2014) Camel milk inhibits inflammatory angiogenesis via downregulation of proangiogenic and proinflammatory cytokines in mice. APMIS 122:599–607. https://doi.org/10.1111/apm.12199
doi: 10.1111/apm.12199 pubmed: 24320686
Khatoon H, Ikram R, Anser H, Naeem S, Khan SS, Fatima S, Sultana N, Sarfaraz S (2019) Investigation of anti-inflammatory and analgesic activities of camel milk in animal models. Pak J Pharm Sci 32:4 (PMID: 31680087)
He J, Guo K, Chen Q, Wang Y (2022) Camel milk modulates the gut microbiota and has anti-inflammatory effects in a mouse model of colitis. J Dairy Sci 105:3782–3793. https://doi.org/10.3168/jds.2021-21345
doi: 10.3168/jds.2021-21345 pubmed: 35248376
Dharmisthaben P, Basaiawmoit B, Sakure A, Das S, Maurya R, Bishnoi M, Kondepudi KK, Hati S (2021) Exploring potentials of antioxidative, anti-inflammatory activities and production of bioactive peptides in lactic fermented camel milk. Food Biosci 44:101404.   https://doi.org/10.1016/j.fbio.2021.101404
doi: 10.1016/j.fbio.2021.101404
Wang Z, Zhang W, Wang B, Zhang F, Shao Y (2018) Influence of Bactrian camel milk on the gut microbiota. J Dairy Sci 101:5758–5769. https://doi.org/10.3168/jds.2017-13860
doi: 10.3168/jds.2017-13860 pubmed: 29705422
Habib HM, Ibrahim WH, Schneider-Stock R, Hassan HM (2013) Camel milk lactoferrin reduces the proliferation of colorectal cancer cells and exerts antioxidant and DNA damage inhibitory activities. Food Chem 141:148–152. https://doi.org/10.1016/j.foodchem.2013.03.039
doi: 10.1016/j.foodchem.2013.03.039 pubmed: 23768340
Park YW, Haenlein GF, Wendorff W (2017) Overview of milk of non-bovine mammals. In: Park YW, Haenlein GFW, Wendorff WL (eds) Handbook of Milk of Non-Bovine Mammals, 2nd edn. Wiley, New York, pp 1–9
doi: 10.1002/9781119110316
Jastrzębska E, Wadas E, Daszkiewicz T, Pietrzak-Fiećko R (2017) Nutritional value and health-promoting properties of mare’s milk− a review. Czech J Anim Sci 62:511–518. https://doi.org/10.17221/61/2016-CJAS
doi: 10.17221/61/2016-CJAS
Smanalieva J, Iskakova J, Musulmanova M (2022) Milk-and cereal-based Kyrgyz ethnic foods. Int J Gastron Food Sci 29:100507.  https://doi.org/10.1016/j.ijgfs.2022.100507
doi: 10.1016/j.ijgfs.2022.100507
Ellinger S, Linscheid KP, Jahnecke S, Goerlich R, Enbergs H (2002) The effect of mare’s milk consumption on functional elements of phagocytosis of human neutrophil granulocytes from healthy volunteers. Food Agric Immunol 14:191–200. https://doi.org/10.1080/09540100220145000b
doi: 10.1080/09540100220145000b
Yuniati H, Sahara E (2012) Bioactive components of protein and fat in wild horse milk. Bull Health Res 40:66–74.
Titisari N, Widyaputri T, Mahfuzah R, Widodo E (2020) Sumbawa mare milk as a preventive against inflammation in the gaster of inflammatory bowel disease (IBD) animal model. SciFed Mater Res Lett 8:1170–1174. https://doi.org/10.17582/journal.aavs/2020/8.11.1170.1174
doi: 10.17582/journal.aavs/2020/8.11.1170.1174
Roy D, Ye A, Moughan PJ, Singh H (2020) Composition, structure, and digestive dynamics of milk from different species—A review. Front Nutr 7:577759. https://doi.org/10.3389/fnut.2020.577759
doi: 10.3389/fnut.2020.577759 pubmed: 33123547 pmcid: 7573072
Fantuz F, Salimei E, Papademas P (2016) Macro-and micronutrients in non-cow milk and products and their impact on human health. In: Tsakalidou E, Papadimitriou K (eds) Non-bovine milk and milk products. Elsevier, pp 209–261
Behrouz S, Saadat S, Memarzia A, Sarir H, Folkerts G, Boskabady MH (2022) The antioxidant, anti-inflammatory and immunomodulatory effects of camel milk. Front Immunol 13:855342.  https://doi.org/10.3389/fimmu.2022.855342
doi: 10.3389/fimmu.2022.855342 pubmed: 35493477 pmcid: 9039309

Auteurs

Emine Kocyigit (E)

Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, 52200, Ordu, Turkey. kocyigitem@gmail.com.

Ruslan Abdurakhmanov (R)

Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

Burhan Fatih Kocyigit (BF)

Department of Physical Medicine and Rehabilitation, University of Health Sciences, Adana Health Practice and Research Center, Adana, Turkey.

Classifications MeSH