Role of PERK-Mediated Endoplasmic Reticulum Stress in Ferroptosis Caused by Hexavalent Chromium in Chicken Hepatocytes.
Chicken hepatocytes
Cr(VI)
Endoplasmic reticulum stress
Ferroptosis
PERK
Journal
Biological trace element research
ISSN: 1559-0720
Titre abrégé: Biol Trace Elem Res
Pays: United States
ID NLM: 7911509
Informations de publication
Date de publication:
06 Jan 2024
06 Jan 2024
Historique:
received:
15
10
2023
accepted:
26
12
2023
medline:
7
1
2024
pubmed:
7
1
2024
entrez:
6
1
2024
Statut:
aheadofprint
Résumé
This study aimed to investigate whether Cr(VI) can induce ferroptosis in chicken hepatocytes and determine the role of PERK-mediated endoplasmic reticulum stress (ERS). First, a model of Cr(VI) poisoning was established by exposing chicken hepatocytes to Cr(VI). The levels of ferroptosis-related proteins, meanwhile, GSH, SOD, MDA, and lipid ROS, were measured. Furthermore, the expression of GRP78 and PERK proteins was examined. Changes in ERS and ferroptosis were evaluated by silencing the PERK gene. Results showed that Cr(VI) led to the accumulation of lipid ROS, decreased expression of GPX4 and HSP27, increased expression of COX2, and induced ferroptosis in chicken hepatocytes. Exposure to Cr(VI) increased the protein expression of GRP78 and PERK, and silencing of PERK worsened Cr(VI)-induced ferroptosis. In conclusion, Cr(VI) can induce ferroptosis in chicken hepatocytes, and PERK plays an important role as a negative regulator.
Identifiants
pubmed: 38183555
doi: 10.1007/s12011-023-04046-8
pii: 10.1007/s12011-023-04046-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Liu J, Xue J, Wei X, Su H, Xu R (2020) Optimization of Cr(6+) removal by Bacillus subtilis strain SZMC 6179J from chromium-containing soil. Indian J Microbiol 60(4):430–435. https://doi.org/10.1007/s12088-020-00886-3
doi: 10.1007/s12088-020-00886-3
pubmed: 33087992
pmcid: 7539242
M. K. Murthy, P. Khandayataray, S. Padhiary and D. Samal (2022) A review on chromium health hazards and molecular mechanism of chromium bioremediation. Reviews on environmental health 11;38(3):461–478. https://doi.org/10.1515/reveh-2021-0139
Li X, Zhang J, Ma J, Liu Q, Shi T, Gong Y, Yang S, Wu Y (2020) Status of chromium accumulation in agricultural soils across China (1989–2016). Chemosphere 256:127036. https://doi.org/10.1016/j.chemosphere.2020.127036
doi: 10.1016/j.chemosphere.2020.127036
pubmed: 32428740
Ali A, Ma Y, Reynolds J, Wise JP, Inzucchi SE, Katz DL (2011) Chromium picolinate for the prevention of type 2 diabetes. Treatment strategies Diabetes 3(1):34–40. https://doi.org/10.1038/nature12828
doi: 10.1038/nature12828
pubmed: 25243064
pmcid: 4169208
Kooshki F, Moradi F, Karimi A, Niazkar HR, Khoshbaten M, Maleki V, Pourghassem Gargari B (2021) Chromium picolinate balances the metabolic and clinical markers in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled trial. Eur J Gastroenterol Hepatol 33(10):1298–1306. https://doi.org/10.1097/meg.0000000000001830
doi: 10.1097/meg.0000000000001830
pubmed: 32804855
J. J. Coetzee, N. Bansal, E. J. E. Chirwa and health (2020) Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. 12 (1): 51–62. https://doi.org/10.1007/s12403-018-0284-z
Zill EH, Khan ZI, Noorka IR, Ahmad K, Wajid K, Nadeem M, Munir M, Malik IS, Kiran M, Hussain T, Qamar MF, Ahmad T, Rehman SU, Ullah MF (2021) Appraisal of chromium in chicken reared on maize irrigated with sewage water. Environ Sci Pollut Res Int 28(9):11509–11517. https://doi.org/10.1007/s11356-020-11393-9
doi: 10.1007/s11356-020-11393-9
Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21(1):28–44. https://doi.org/10.1021/tx700198a
doi: 10.1021/tx700198a
pubmed: 17970581
Saran U, Tyagi A, Chandrasekaran B, Ankem MK, Damodaran C (2021) The role of autophagy in metal-induced urogenital carcinogenesis. Seminars in cancer biology 76:247–257. https://doi.org/10.1016/j.semcancer.2021.03.022
doi: 10.1016/j.semcancer.2021.03.022
pubmed: 33798723
pmcid: 8481337
Li J, Zheng X, Ma X, Xu X, Du Y, Lv Q, Li X, Wu Y, Sun H, Yu L, Zhang Z (2019) Melatonin protects against chromium(VI)-induced cardiac injury via activating the AMPK/Nrf2 pathway. J Inorg Biochem 197:110698. https://doi.org/10.1016/j.jinorgbio.2019.110698
doi: 10.1016/j.jinorgbio.2019.110698
pubmed: 31054488
Lv Y, Jiang H, Li S, Han B, Liu Y, Yang D, Li J, Yang Q, Wu P, Zhang Z (2020) Sulforaphane prevents chromium-induced lung injury in rats via activation of the Akt/GSK-3β/Fyn pathway. Environmental pollution (Barking, Essex : 1987) 259:113812. https://doi.org/10.1016/j.envpol.2019.113812
doi: 10.1016/j.envpol.2019.113812
pubmed: 31884211
Sun H, Zhou X, Chen H, Li Q, Costa M (2009) Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium. Toxicol Appl Pharmacol 237(3):258–266. https://doi.org/10.1016/j.taap.2009.04.008
doi: 10.1016/j.taap.2009.04.008
pubmed: 19376149
pmcid: 2701251
Das J, Sarkar A, Sil PC (2015) Hexavalent chromium induces apoptosis in human liver (HepG2) cells via redox imbalance. Toxicol Rep 2:600–608. https://doi.org/10.1016/j.toxrep.2015.03.013
doi: 10.1016/j.toxrep.2015.03.013
pubmed: 28962395
pmcid: 5598256
Zhang Y, Ma Y, Xiao Y, Lu C, Xiao F (2020) Drp1-dependent mitochondrial fission contributes to Cr(VI)-induced mitophagy and hepatotoxicity. Ecotoxicol Environ Saf 203:110928. https://doi.org/10.1016/j.ecoenv.2020.110928
doi: 10.1016/j.ecoenv.2020.110928
pubmed: 32888618
Tang D, Kroemer G (2020) Ferroptosis. Current biology : CB 30(21):R1292-r1297. https://doi.org/10.1016/j.cub.2020.09.068
doi: 10.1016/j.cub.2020.09.068
pubmed: 33142092
Hadian K, Stockwell BR (2020) SnapShot: ferroptosis. Cell 181(5):1188-1188.e1181. https://doi.org/10.1016/j.cell.2020.04.039
doi: 10.1016/j.cell.2020.04.039
pubmed: 32470402
pmcid: 8157339
Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194. https://doi.org/10.1146/annurev-pathol-012513-104649
doi: 10.1146/annurev-pathol-012513-104649
pubmed: 25387057
Huang J, Xie H, Yang Y, Chen L, Lin T, Wang B, Lin QC (2022) The role of ferroptosis and endoplasmic reticulum stress in intermittent hypoxia-induced myocardial injury. Sleep & breathing = Schlaf & Atmung 27(3):1005–1011. https://doi.org/10.1007/s11325-022-02692-1
doi: 10.1007/s11325-022-02692-1
Zhang X, Jiang L, Chen H, Wei S, Yao K, Sun X, Yang G, Jiang L, Zhang C, Wang N, Wang Y, Liu X (2022) Resveratrol protected acrolein-induced ferroptosis and insulin secretion dysfunction via ER-stress- related PERK pathway in MIN6 cells. Toxicology 465:153048. https://doi.org/10.1016/j.tox.2021.153048
doi: 10.1016/j.tox.2021.153048
pubmed: 34813903
Liang Q, Zhang Y, Huang M, Xiao Y, Xiao F (2019) Role of mitochondrial damage in Cr(VI)-induced endoplasmic reticulum stress in L-02 hepatocytes. Mol Med Rep 19(2):1256–1265. https://doi.org/10.3892/mmr.2018.9704
doi: 10.3892/mmr.2018.9704
pubmed: 30535451
Wei R, Zhao Y, Wang J, Yang X, Li S, Wang Y, Yang X, Fei J, Hao X, Zhao Y, Gui L, Ding X (2021) Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. Int J Biol Sci 17(11):2703–2717. https://doi.org/10.7150/ijbs.59404
doi: 10.7150/ijbs.59404
pubmed: 34345202
pmcid: 8326123
Chen Y, Mi Y, Zhang X, Ma Q, Song Y, Zhang L, Wang D, Xing J, Hou B, Li H, Jin H, Du W, Zou Z (2019) Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. Journal of experimental & clinical cancer research : CR 38(1):402. https://doi.org/10.1186/s13046-019-1413-7
doi: 10.1186/s13046-019-1413-7
pmcid: 6743121
Wu Q, Liu C, Liu D, Wang Y, Qi H, Liu X, Zhang Y, Chen H, Zeng Y, Li J (2023) Polystyrene nanoplastics-induced lung apoptosis and ferroptosis via ROS-dependent endoplasmic reticulum stress. The Science of the total environment 912:169260. https://doi.org/10.1016/j.scitotenv.2023.169260
doi: 10.1016/j.scitotenv.2023.169260
pubmed: 38086481
Wang L, Zheng P, Cui Y, Zhang Z, Song K, Liu Y, Liu J (2022) Regulation of Parkin in Cr (VI)-induced mitophagy in chicken hepatocytes. Ecotoxicol Environ Saf 248:114315. https://doi.org/10.1016/j.ecoenv.2022.114315
doi: 10.1016/j.ecoenv.2022.114315
pubmed: 36423368
Liu K, Chen P, Lu J, Zhu Y, Xu Y, Liu Y, Liu J (2020) Protective effect of purple tomato anthocyanidin on chromium(VI)-induced autophagy in LMH cells by inhibiting endoplasmic reticulum stress. Biol Trace Elem Res 194(2):570–580. https://doi.org/10.1007/s12011-019-01795-3
doi: 10.1007/s12011-019-01795-3
pubmed: 31264128
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042
doi: 10.1016/j.cell.2012.03.042
pubmed: 22632970
pmcid: 3367386
Hirschhorn T, Stockwell BR (2019) The development of the concept of ferroptosis. Free Radical Biol Med 133:130–143. https://doi.org/10.1016/j.freeradbiomed.2018.09.043
doi: 10.1016/j.freeradbiomed.2018.09.043
Bellouard M, Gasser M, Lenglet S, Gilardi F, Bararpour N, Augsburger M, Thomas A, Alvarez JC (2022) Toxicity and metabolomic impact of cobalt, chromium, and nickel exposure on HepaRG hepatocytes. Chem Res Toxicol 35(5):807–816. https://doi.org/10.1021/acs.chemrestox.1c00429
doi: 10.1021/acs.chemrestox.1c00429
pubmed: 35442019
Y. Wang, Y. Liu, H. Wan, Y. Zhu, P. Chen, P. Hao, Z. Cheng and J. Liu (2017) Moderate selenium dosing inhibited chromium (VI) toxicity in chicken liver. Journal of biochemical and molecular toxicology 31:(8). https://doi.org/10.1002/jbt.21916
S. Xu, C. Yu, Q. Wang, J. Liao, C. Liu, L. Huang, Q. Liu, Z. Wen and Y. Feng (2022) Chromium contamination and health risk assessment of soil and agricultural products in a rural area in Southern China. Toxics 11:(1). https://doi.org/10.3390/toxics11010027
Peng Y, Li H, Shen K, Pan W, Zhang J, Zhou D (2021) Nano-selenium alleviating the lipid metabolism disorder of LMH cells induced by potassium dichromate via down-regulating ACACA and FASN. Environ Sci Pollut Res Int 28(48):69426–69435. https://doi.org/10.1007/s11356-021-14775-9
doi: 10.1007/s11356-021-14775-9
pubmed: 34302249
Imai H, Matsuoka M, Kumagai T, Sakamoto T, Koumura T (2017) Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol 403:143–170. https://doi.org/10.1007/82_2016_508
doi: 10.1007/82_2016_508
pubmed: 28204974
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331. https://doi.org/10.1016/j.cell.2013.12.010
doi: 10.1016/j.cell.2013.12.010
pubmed: 24439385
pmcid: 4076414
Yuan F, Sun Q, Zhang S, Ye L, Xu Y, Xu Z, Liu B, Zhang S, Chen Q (2022) HSP27 protects against ferroptosis of glioblastoma cells. Hum Cell 35(1):238–249. https://doi.org/10.1007/s13577-021-00645-6
doi: 10.1007/s13577-021-00645-6
pubmed: 34791597
Ursini F, Maiorino M (2020) Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radical Biol Med 152:175–185. https://doi.org/10.1016/j.freeradbiomed.2020.02.027
doi: 10.1016/j.freeradbiomed.2020.02.027
Wang Y, Branicky R, Noë A, Hekimi S (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217(6):1915–1928. https://doi.org/10.1083/jcb.201708007
doi: 10.1083/jcb.201708007
pubmed: 29669742
pmcid: 5987716
Tsikas D (2017) Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem 524:13–30. https://doi.org/10.1016/j.ab.2016.10.021
doi: 10.1016/j.ab.2016.10.021
pubmed: 27789233
Liu P, Feng Y, Li H, Chen X, Wang G, Xu S, Li Y, Zhao L (2020) Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell Mol Biol Lett 25:10. https://doi.org/10.1186/s11658-020-00205-0
doi: 10.1186/s11658-020-00205-0
pubmed: 32161620
pmcid: 7045739
Wang C, Yuan W, Hu A, Lin J, Xia Z, Yang CF, Li Y, Zhang Z (2020) Dexmedetomidine alleviated sepsis-induced myocardial ferroptosis and septic heart injury. Mol Med Rep 22(1):175–184. https://doi.org/10.3892/mmr.2020.11114
doi: 10.3892/mmr.2020.11114
pubmed: 32377745
pmcid: 7248514
Degterev A, Linkermann A (2016) Generation of small molecules to interfere with regulated necrosis. Cellular and molecular life sciences : CMLS 73(11–12):2251–2267. https://doi.org/10.1007/s00018-016-2198-x
doi: 10.1007/s00018-016-2198-x
pubmed: 27048812
Kawaguchi T, Nomura K, Hirayama Y, Kitagawa T (1987) Establishment and characterization of a chicken hepatocellular carcinoma cell line. LMH Cancer research 47(16):4460–4464
pubmed: 3607775
Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, Tyagi S, Ma L, Westbrook TF, Steinberg GR, Nakada D, Stockwell BR, Gan B (2020) Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol 22(2):225–234. https://doi.org/10.1038/s41556-020-0461-8
doi: 10.1038/s41556-020-0461-8
pubmed: 32029897
pmcid: 7008777
Lee YS, Lee DH, Choudry HA, Bartlett DL, Lee YJ (2018) Ferroptosis-induced endoplasmic reticulum stress: cross-talk between ferroptosis and apoptosis. Molecular cancer research : MCR 16(7):1073–1076. https://doi.org/10.1158/1541-7786.Mcr-18-0055
doi: 10.1158/1541-7786.Mcr-18-0055
pubmed: 29592897