Curcumin and Ferroptosis: a Promising Target for Disease Prevention and Treatment.
Cancer
Curcuminoids
Ferroptosis
Iron
Journal
Cell biochemistry and biophysics
ISSN: 1559-0283
Titre abrégé: Cell Biochem Biophys
Pays: United States
ID NLM: 9701934
Informations de publication
Date de publication:
06 Jan 2024
06 Jan 2024
Historique:
received:
15
10
2023
accepted:
24
12
2023
medline:
7
1
2024
pubmed:
7
1
2024
entrez:
6
1
2024
Statut:
aheadofprint
Résumé
Ferroptosis is a recently identified form of cell death characterized by iron accumulation and lipid peroxidation. Unlike apoptosis, necrosis, and autophagy, ferroptosis operates through a distinct molecular pathway. Curcumin, derived from turmeric rhizomes, is a natural compound with diverse therapeutic benefits, including neuroprotective, anti-metabolic syndrome, anti-inflammatory, and anti-cancer properties. Growing evidence suggests that curcumin possesses both pro-oxidant and antioxidant properties, which can vary depending on the cell type. In this review, we explore the relationship between the effects of curcumin and the molecular mechanisms underlying the ferroptosis signaling pathway, drawing from current in vivo and in vitro research. Curcumin has been found to induce ferroptosis in cancer cells while acting as an inhibitor of ferroptosis in tissue injuries. Notably, curcumin treatment leads to alterations in key ferroptosis markers, underscoring its significant impact on this process. Nonetheless, further research focused on elucidating this important attribute of turmeric is crucial for advancing disease treatment.
Identifiants
pubmed: 38183601
doi: 10.1007/s12013-023-01212-6
pii: 10.1007/s12013-023-01212-6
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Galluzzi, L., Vitale, I. & Aaronson, S. A. et al. (2018). Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death & Differentiation, 25(3), 486–541. https://doi.org/10.1038/s41418-017-0012-4 .
doi: 10.1038/s41418-017-0012-4
Yang, W. S., & Stockwell, B. R. (2016). Ferroptosis: death by lipid peroxidation. Trends in Cell Biology, 26(3), 165–176. https://doi.org/10.1016/j.tcb.2015.10.014 .
doi: 10.1016/j.tcb.2015.10.014
pubmed: 26653790
Xie, L.-H., Fefelova, N., Pamarthi, S. H., & Gwathmey, J. K. (2022). Molecular mechanisms of ferroptosis and relevance to cardiovascular disease. Cells, 11(17), 2726 https://doi.org/10.3390/cells11172726 .
doi: 10.3390/cells11172726
pubmed: 36078133
pmcid: 9454912
Dixon, S. J., Lemberg, K. M., & Lamprecht, M. R., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042 .
doi: 10.1016/j.cell.2012.03.042
pubmed: 22632970
pmcid: 3367386
Yang, W. S., Kim, K. J., Gaschler, M. M., Patel, M., Shchepinov, M. S., & Stockwell, B. R. (2016). Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proceedings of the National Academy of Sciences USA, 113(34), E4966–E4975. https://doi.org/10.1073/pnas.1603244113 .
doi: 10.1073/pnas.1603244113
Forcina, G. C., & Dixon, S. J. (2019). GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics, 19(18), 1800311 https://doi.org/10.1002/pmic.201800311 .
doi: 10.1002/pmic.201800311
Koppula, P., Zhuang, L., & Gan, B. (2021). Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein & Cell, 12(8), 599–620. https://doi.org/10.1007/s13238-020-00789-5 .
doi: 10.1007/s13238-020-00789-5
Prasad, S., Tyagi, A. K., & Aggarwal, B. B. (2014). Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Research and Treatment, 46(1), 2–18. https://doi.org/10.4143/crt.2014.46.1.2 .
doi: 10.4143/crt.2014.46.1.2
pubmed: 24520218
pmcid: 3918523
Cicero, A. F. G., Sahebkar, A., Fogacci, F., Bove, M., Giovannini, M., & Borghi, C. (2020). Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: a double-blind, placebo-controlled clinical trial. European Journal of Nutrition, 59(2), 477–483. https://doi.org/10.1007/s00394-019-01916-7 .
doi: 10.1007/s00394-019-01916-7
pubmed: 30796508
Keihanian, F., Saeidinia, A., Bagheri, R. K., Johnston, T. P., & Sahebkar, A. (2018). Curcumin, hemostasis, thrombosis, and coagulation. Journal of Cellular Physiology, 233(6), 4497–4511. https://doi.org/10.1002/jcp.26249 .
doi: 10.1002/jcp.26249
pubmed: 29052850
Khayatan D., Razavi S. M., Arab Z. N., et al. Protective effects of curcumin against traumatic brain injury. Biomedicine and Pharmacotherapy. 2022;154. https://doi.org/10.1016/j.biopha.2022.113621
Marjaneh, R. M., Rahmani, F., & Hassanian, S. M., et al. (2018). Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. Journal of Cellular Physiology, 233(10), 6785–6798. https://doi.org/10.1002/jcp.26538 .
doi: 10.1002/jcp.26538
pubmed: 29737515
Mohajeri, M., & Sahebkar, A. (2018). Protective effects of curcumin against doxorubicin-induced toxicity and resistance: a review. Critical Reviews in Oncology/Hematology, 122, 30–51. https://doi.org/10.1016/j.critrevonc.2017.12.005 .
doi: 10.1016/j.critrevonc.2017.12.005
pubmed: 29458788
Mohammadi, A., Blesso, C. N., Barreto, G. E., Banach, M., Majeed, M., & Sahebkar, A. (2019). Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. Journal of Nutritional Biochemistry, 66, 1–16. https://doi.org/10.1016/j.jnutbio.2018.12.005 .
doi: 10.1016/j.jnutbio.2018.12.005
pubmed: 30660832
Mokhtari-Zaer, A., Marefati, N., Atkin, S. L., Butler, A. E., & Sahebkar, A. (2018). The protective role of curcumin in myocardial ischemia–reperfusion injury. Journal of Cellular Physiology, 234(1), 214–222. https://doi.org/10.1002/jcp.26848 .
doi: 10.1002/jcp.26848
pubmed: 29968913
Panahi, Y., Fazlolahzadeh, O., & Atkin, S. L., et al. (2019). Evidence of curcumin and curcumin analogue effects in skin diseases: a narrative review. Journal of Cellular Physiology, 234(2), 1165–1178. https://doi.org/10.1002/jcp.27096 .
doi: 10.1002/jcp.27096
pubmed: 30073647
Panahi, Y., Sahebkar, A., & Amiri, M., et al. (2012). Improvement of sulphur mustard-induced chronic pruritus, quality of life and antioxidant status by curcumin: Results of a randomised, double-blind, placebo-controlled trial. British Journal of Nutrition, 108(7), 1272–1279. https://doi.org/10.1017/S0007114511006544 .
doi: 10.1017/S0007114511006544
pubmed: 22099425
Sahebkar A. Curcuminoids for the management of hypertriglyceridaemia. Nature Reviews Cardiology. 2014;11(2). https://doi.org/10.1038/nrcardio.2013.140-c1
Fu, Y.-S., Chen, T.-H., Weng, L., Huang, L., Lai, D., & Weng, C.-F. (2021). Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomedicine & Pharmacotherapy, 141, 111888 https://doi.org/10.1016/j.biopha.2021.111888 .
doi: 10.1016/j.biopha.2021.111888
Grynkiewicz G., Ślifirski P. Curcumin and curcuminoids in quest for medicinal status. Acta Biochimica Polonica. 2012;59(2). https://doi.org/10.18388/abp.2012_2139
Kunwar, A., Sandur, S. K., Krishna, M., & Priyadarsini, K. I. (2009). Curcumin mediates time and concentration dependent regulation of redox homeostasis leading to cytotoxicity in macrophage cells. European Journal of Pharmacology, 611(1-3), 8–16. https://doi.org/10.1016/j.ejphar.2009.03.060 .
doi: 10.1016/j.ejphar.2009.03.060
pubmed: 19344704
AloK, A., Singh, I. D., Singh, S., Kishore, M., & Jha, P. C. (2015). Curcumin–pharmacological actions and its role in oral submucous fibrosis: a review. Journal of Clinical and Diagnostic Research, 9(10), ZE01 https://doi.org/10.7860/JCDR/2015/13857.6552 .
doi: 10.7860/JCDR/2015/13857.6552
pubmed: 26557633
pmcid: 4625352
Ahmed, S., Khan, H., & Mirzaei, H. (2019). Mechanics insights of curcumin in myocardial ischemia: Where are we standing? European Journal of Medicinal Chemistry, 183, 111658 https://doi.org/10.1016/j.ejmech.2019.111658 .
doi: 10.1016/j.ejmech.2019.111658
pubmed: 31514063
Bernfeld, E., & Foster, D. A. (2019). Glutamine as an essential amino acid for KRas-driven cancer cells. Trends in Endocrinology & Metabolism, 30(6), 357–368. https://doi.org/10.1016/j.tem.2019.03.003 .
doi: 10.1016/j.tem.2019.03.003
Yang, J., Dai, X., Xu, H., Tang, Q., & Bi, F. (2022). Regulation of ferroptosis by amino acid metabolism in cancer. International Journal of Biological Sciences, 18(4), 1695 https://doi.org/10.7150/ijbs.64982 .
doi: 10.7150/ijbs.64982
pubmed: 35280684
pmcid: 8898355
Cao, X., Li, Y., & Wang, Y., et al. (2022). Curcumin suppresses tumorigenesis by ferroptosis in breast cancer. PLoS ONE, 17(1), e0261370 https://doi.org/10.1371/journal.pone.0261370 .
doi: 10.1371/journal.pone.0261370
pubmed: 35041678
pmcid: 8765616
Li R., Zhang J., Zhou Y., et al. Transcriptome investigation and in vitro verification of curcumin-induced HO-1 as a feature of ferroptosis in breast cancer cells. Oxidative Medicine and Cellular Longevity. 2020;2020. https://doi.org/10.1155/2020/3469840
Kwon, M.-Y., Park, E., Lee, S.-J., & Chung, S. W. (2015). Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget, 6(27), 24393 https://doi.org/10.18632/oncotarget.5162 .
doi: 10.18632/oncotarget.5162
pubmed: 26405158
pmcid: 4695193
Chen, T.-C., Chuang, J.-Y., & Ko, C.-Y., et al. (2020). AR ubiquitination induced by the curcumin analog suppresses growth of temozolomide-resistant glioblastoma through disrupting GPX4-Mediated redox homeostasis. Redox Biology, 30, 101413 https://doi.org/10.1016/j.redox.2019.101413 .
doi: 10.1016/j.redox.2019.101413
pubmed: 31896509
Pignanelli, C., Ma, D., & Noel, M., et al. (2017). Selective targeting of cancer cells by oxidative vulnerabilities with novel curcumin analogs. Scientific Reports, 7(1), 1105 https://doi.org/10.1038/s41598-017-01230-4 .
doi: 10.1038/s41598-017-01230-4
pubmed: 28439094
pmcid: 5430918
Chen M., Tan A-h, Li J. Curcumin represses colorectal cancer cell proliferation by triggering ferroptosis via PI3K/Akt/mTOR signaling. Nutrition and Cancer. 2022:1–8. https://doi.org/10.1080/01635581.2022.2139398
Zheng, Z., Zhang, X., Carbo, D., Clark, C., Nathan, C.-A., & Lvov, Y. (2010). Sonication-assisted synthesis of polyelectrolyte-coated curcumin nanoparticles. Langmuir, 26(11), 7679–7681. https://doi.org/10.1021/la101246a .
doi: 10.1021/la101246a
pubmed: 20459072
pmcid: 2898898
Wang, Q., Dou, Y., & Zhao, S., et al. (2020). Analysis of chemical consistency and the anti-tumor activity of Huangqi-Ezhu (HQ-EZ) concentrated-granules and decoction. Ann Palliat Med, 9(4), 1648–1659. https://doi.org/10.21037/apm-19-592 .
doi: 10.21037/apm-19-592
pubmed: 32576003
Zhang, R., Pan, T., & Xiang, Y., et al. (2022). Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioactive Materials, 13, 23–36. https://doi.org/10.1016/j.bioactmat.2021.11.013 .
doi: 10.1016/j.bioactmat.2021.11.013
pubmed: 35224289
Wang W., Xie Y., Malhotra A. Potential of curcumin and quercetin in modulation of premature mitochondrial senescence and related changes during lung carcinogenesis. Journal of Environmental Pathology Toxicology and Oncology. 2021;40(4). https://doi.org/10.1615/jenvironpatholtoxicoloncol.2021039371
Tang, X., Ding, H., & Liang, M., et al. (2021). Curcumin induces ferroptosis in non‐small‐cell lung cancer via activating autophagy. Thoracic Cancer, 12(8), 1219–1230. https://doi.org/10.1111/1759-7714.13904 .
doi: 10.1111/1759-7714.13904
pubmed: 33656766
pmcid: 8046146
Doll, S., Proneth, B., & Tyurina, Y. Y., et al. (2017). ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature Chemical Biology, 13(1), 91–98. https://doi.org/10.1038/nchembio.2239 .
doi: 10.1038/nchembio.2239
pubmed: 27842070
Kose, T., Vera-Aviles, M., Sharp, P. A., & Latunde-Dada, G. O. (2019). Curcumin and (−)-epigallocatechin-3-gallate protect murine MIN6 pancreatic beta-cells against iron toxicity and erastin-induced ferroptosis. Pharmaceuticals, 12(1), 26 https://doi.org/10.3390/ph12010026 .
doi: 10.3390/ph12010026
pubmed: 30736288
pmcid: 6469157
Dodson, M., Castro-Portuguez, R., & Zhang, D. D. (2019). NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biology, 23, 101107 https://doi.org/10.1016/j.redox.2019.101107 .
doi: 10.1016/j.redox.2019.101107
pubmed: 30692038
pmcid: 6859567
Wei Z., Shaohuan Q., Pinfang K., Chao S. Curcumin attenuates ferroptosis-induced myocardial injury in diabetic cardiomyopathy through the Nrf2 pathway. Cardiovascular Therapeutics. 2022;2022. https://doi.org/10.1155/2022/3159717
Ursini, F., & Maiorino, M. (2020). Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radical Biology and Medicine, 152, 175–185. https://doi.org/10.1016/j.freeradbiomed.2020.02.027 .
doi: 10.1016/j.freeradbiomed.2020.02.027
pubmed: 32165281
Ikawa, T., Sato, M., Oh-Hashi, K., Furuta, K., & Hirata, Y. (2021). Oxindole–curcumin hybrid compound enhances the transcription of γ-glutamylcysteine ligase. European Journal of Pharmacology, 896, 173898 https://doi.org/10.1016/j.ejphar.2021.173898 .
doi: 10.1016/j.ejphar.2021.173898
pubmed: 33508284
Hirata, Y., Tsunekawa, Y., & Takahashi, M., et al. (2021). Identification of novel neuroprotective N, N-dimethylaniline derivatives that prevent oxytosis/ferroptosis and localize to late endosomes and lysosomes. Free Radical Biology and Medicine, 174, 225–235. https://doi.org/10.1016/j.freeradbiomed.2021.08.015 .
doi: 10.1016/j.freeradbiomed.2021.08.015
pubmed: 34407426
Hirata, Y., Okazaki, R., Sato, M., Oh-Hashi, K., Takemori, H., & Furuta, K. (2022). Effect of ferroptosis inhibitors oxindole-curcumin hybrid compound and N, N-dimethylaniline derivatives on rotenone-induced oxidative stress. European Journal of Pharmacology, 928, 175119 https://doi.org/10.1016/j.ejphar.2022.175119 .
doi: 10.1016/j.ejphar.2022.175119
pubmed: 35753403
Zhou, S.-Y., Cui, G.-Z., & Yan, X.-L., et al. (2020). Mechanism of ferroptosis and its relationships with other types of programmed cell death: insights for potential interventions after intracerebral hemorrhage. Frontiers in Neuroscience, 14, 589042 https://doi.org/10.3389/fnins.2020.589042 .
doi: 10.3389/fnins.2020.589042
pubmed: 33281547
pmcid: 7691292
Yang, C., Han, M., & Li, R., et al. (2021). Curcumin nanoparticles inhibiting ferroptosis for the enhanced treatment of intracerebral hemorrhage. International Journal of Nanomedicine, 16, 8049 https://doi.org/10.2147/IJN.S334965 .
doi: 10.2147/IJN.S334965
pubmed: 34938072
pmcid: 8685769
Zheng, Y., Zhao, T., & Wang, J., et al. (2022). Curcumol alleviates liver fibrosis through inducing autophagy and ferroptosis in hepatic stellate cells. The FASEB Journal, 36(12), e22665 https://doi.org/10.1096/fj.202200933RR .
doi: 10.1096/fj.202200933RR
pubmed: 36398583
Tang, X., Li, Z., & Yu, Z., et al. (2021). Effect of curcumin on lung epithelial injury and ferroptosis induced by cigarette smoke. Human & Experimental Toxicology, 40(12_suppl), S753–S762. https://doi.org/10.1177/09603271211059497 .
doi: 10.1177/09603271211059497
Córdoba-David, G., Duro-Castano, A., & Castelo-Branco, R. C., et al. (2020). Effective nephroprotection against acute kidney injury with a star-shaped polyglutamate-curcuminoid conjugate. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-58974-9 .
doi: 10.1038/s41598-020-58974-9
Guerrero‐Hue, M., García‐Caballero, C., & Palomino‐Antolín, A., et al. (2019). Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis‐mediated cell death. The FASEB Journal, 33(8), 8961–8975. https://doi.org/10.1096/fj.201900077R .
doi: 10.1096/fj.201900077R
pubmed: 31034781