Molecular Biology Applications of Psychrophilic Enzymes: Adaptations, Advantages, Expression, and Prospective.
Enzyme expression
Enzyme mining
Enzyme screening
Molecular biology
Psychrophiles
Psychrophilic enzymes
Journal
Applied biochemistry and biotechnology
ISSN: 1559-0291
Titre abrégé: Appl Biochem Biotechnol
Pays: United States
ID NLM: 8208561
Informations de publication
Date de publication:
06 Jan 2024
06 Jan 2024
Historique:
accepted:
09
12
2023
medline:
7
1
2024
pubmed:
7
1
2024
entrez:
6
1
2024
Statut:
aheadofprint
Résumé
Psychrophilic enzymes are primarily produced by microorganisms from extremely low-temperature environments which are known as psychrophiles. Their high efficiency at low temperatures and easy heat inactivation property have attracted extensive attention from various food and industrial bioprocesses. However, the application of these enzymes in molecular biology is still limited. In a previous review, the applications of psychrophilic enzymes in industries such as the detergent additives, the food additives, the bioremediation, and the pharmaceutical medicine, and cosmetics have been discussed. In this review, we discuss the main cold adaptation characteristics of psychrophiles and psychrophilic enzymes, as well as the relevant information on different psychrophilic enzymes in molecular biology. We summarize the mining and screening methods of psychrophilic enzymes. We finally recap the expression of psychrophilic enzymes. We aim to provide a reference process for the exploration and expression of new generation of psychrophilic enzymes.
Identifiants
pubmed: 38183603
doi: 10.1007/s12010-023-04810-5
pii: 10.1007/s12010-023-04810-5
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : U21A20176
Organisme : Second Tibetan Plateau Scientific Expedition and Research Program
ID : 2019QZKK0503
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Schmid, A. K., Allers, T., & DiRuggiero, J. (2020). SnapShot: Microbial extremophiles. Cell, 180, 818-818.e811.
pubmed: 32084345
doi: 10.1016/j.cell.2020.01.018
Rothschild, L. J., & Mancinelli, R. L. (2001). Life in extreme environments. Nature, 409, 1092–1101.
pubmed: 11234023
doi: 10.1038/35059215
Shu, W. S., & Huang, L. N. (2022). Microbial diversity in extreme environments. Nature Reviews Microbiology, 20, 219–235.
pubmed: 34754082
doi: 10.1038/s41579-021-00648-y
Thakur, N., Singh, S. P., & Zhang, C. (2022). Microorganisms under extreme environments and their applications. Curr Res Microb Sci, 3, 100141.
pubmed: 35909627
pmcid: 9325898
Feller, G. (2013). Psychrophilic enzymes: From folding to function and biotechnology. Scientifica (Cairo), 2013, 512840.
pubmed: 24278781
Morita, R. Y. (1975). Psychrophilic bacteria. Bacteriological Reviews, 39, 144–167.
pubmed: 1095004
pmcid: 413900
doi: 10.1128/br.39.2.144-167.1975
Russell, N. J. (1998). Molecular adaptations in psychrophilic bacteria: Potential for biotechnological applications. Advances in Biochemical Engineering/Biotechnology, 61, 1–21.
pubmed: 9670796
doi: 10.1007/BFb0102287
Cavicchioli, R. (2006). Cold-adapted archaea. Nature Reviews Microbiology, 4, 331–343.
pubmed: 16715049
doi: 10.1038/nrmicro1390
Morgan-Kiss, R. M., Priscu, J. C., Pocock, T., Gudynaite-Savitch, L., & Huner, N. P. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews, 70, 222–252.
pubmed: 16524924
pmcid: 1393254
doi: 10.1128/MMBR.70.1.222-252.2006
Buzzini, P., Branda, E., Goretti, M., & Turchetti, B. (2012). Psychrophilic yeasts from worldwide glacial habitats: Diversity, adaptation strategies and biotechnological potential. FEMS Microbiology Ecology, 82, 217–241.
pubmed: 22385361
doi: 10.1111/j.1574-6941.2012.01348.x
Margesin, R., Neuner, G., & Storey, K. B. (2007). Cold-loving microbes, plants, and animals–Fundamental and applied aspects. Naturwissenschaften, 94, 77–99.
pubmed: 17039344
doi: 10.1007/s00114-006-0162-6
Giordano, D., Russo, R., di Prisco, G., & Verde, C. (2012). Molecular adaptations in Antarctic fish and marine microorganisms. Marine Genomics, 6, 1–6.
pubmed: 22578653
doi: 10.1016/j.margen.2011.09.003
Gilichinsky, D., Rivkina, E., Bakermans, C., Shcherbakova, V., Petrovskaya, L., Ozerskaya, S., Ivanushkina, N., Kochkina, G., Laurinavichuis, K., Pecheritsina, S., Fattakhova, R., & Tiedje, J. M. (2005). Biodiversity of cryopegs in permafrost. FEMS Microbiology Ecology, 53, 117–128.
pubmed: 16329934
doi: 10.1016/j.femsec.2005.02.003
Steven, B., Léveillé, R., Pollard, W. H., & Whyte, L. G. (2006). Microbial ecology and biodiversity in permafrost. Extremophiles, 10, 259–267.
pubmed: 16550305
doi: 10.1007/s00792-006-0506-3
Junge, K., Eicken, H., & Deming, J. W. (2004). Bacterial activity at -2 to -20 degrees C in Arctic wintertime sea ice. Applied and Environment Microbiology, 70, 550–557.
doi: 10.1128/AEM.70.1.550-557.2004
Deming, J. W. (2002). Psychrophiles and polar regions. Current Opinion in Microbiology, 5, 301–309.
pubmed: 12057685
doi: 10.1016/S1369-5274(02)00329-6
Friedmann, E. I. (1982). Endolithic microorganisms in the Antarctic cold desert. Science, 215, 1045–1053.
pubmed: 17771821
doi: 10.1126/science.215.4536.1045
Cary, S. C., McDonald, I. R., Barrett, J. E., & Cowan, D. A. (2010). On the rocks: The microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology, 8, 129–138.
pubmed: 20075927
doi: 10.1038/nrmicro2281
Collins, T., & Margesin, R. (2019). Psychrophilic lifestyles: Mechanisms of adaptation and biotechnological tools. Applied Microbiology and Biotechnology, 103, 2857–2871.
pubmed: 30729286
doi: 10.1007/s00253-019-09659-5
Ghosh, M. & Pulicherla, K. K. (2021). Psychrophiles as the source for potential industrial psychrozymes. In R. Prasad R, V. Kumar, J. Singh, & C. P. Upadhyaya (Eds.), Recent developments in microbial technologies (Vol. 16, pp. 355–366). Singapore: Springer Nature.
Parvizpour, S., Hussin, N., Shamsir, M. S., & Razmara, J. (2021). Psychrophilic enzymes: Structural adaptation, pharmaceutical and industrial applications. Applied Microbiology and Biotechnology, 105, 899–907.
pubmed: 33427934
doi: 10.1007/s00253-020-11074-0
Kumari, M., Padhi, S., Sharma, S., Phukon, L. C., Singh, S. P., & Rai, A. K. (2021). Biotechnological potential of psychrophilic microorganisms as the source of cold-active enzymes in food processing applications. 3 Biotech, 11, 479.
pubmed: 34790503
pmcid: 8557216
doi: 10.1007/s13205-021-03008-y
Al-Ghanayem, A. A., & Joseph, B. (2020). Current prospective in using cold-active enzymes as eco-friendly detergent additive. Applied Microbiology and Biotechnology, 104, 2871–2882.
pubmed: 32037467
doi: 10.1007/s00253-020-10429-x
Kumar, A., Mukhia, S., & Kumar, R. (2021). Industrial applications of cold-adapted enzymes: Challenges, innovations and future perspective. 3 Biotech, 11, 426.
pubmed: 34567931
pmcid: 8421504
doi: 10.1007/s13205-021-02929-y
GrandViewResearch. (2022). Enzymes market size, share & trends analysis report, 2030. Available from: https://www.grandviewresearch.com/industry-analysis/enzymes-industry . Accessed 31 Dec 2023
Bruno, S., Coppola, D., di Prisco, G., Giordano, D., & Verde, C. (2019). Enzymes from marine polar regions and their biotechnological applications. Mar Drugs, 17, 544.
pubmed: 31547548
pmcid: 6835263
doi: 10.3390/md17100544
Hamid, B., Bashir, Z., Yatoo, A. M., Mohiddin, F., Majeed, N., Bansal, M., Poczai, P., Almalki, W. H., Sayyed, R. Z., Shati, A. A., & Alfaifi, M. Y. (2022). Cold-active enzymes and their potential industrial applications-A review. Molecules, 27, 5885.
pubmed: 36144621
pmcid: 9501442
doi: 10.3390/molecules27185885
D’Amico, S., Collins, T., Marx, J. C., Feller, G., & Gerday, C. (2006). Psychrophilic microorganisms: Challenges for life. EMBO Reports, 7, 385–389.
pubmed: 16585939
pmcid: 1456908
doi: 10.1038/sj.embor.7400662
Arrhenius, S. (1889). Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift für Physikalische Chemie, 4U, 226–248.
doi: 10.1515/zpch-1889-0416
Aghajari, N., Feller, G., Gerday, C., & Haser, R. (1998). Crystal structures of the psychrophilic alpha-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor. Protein Science, 7, 564–572.
pubmed: 9541387
pmcid: 2143949
doi: 10.1002/pro.5560070304
Barták, M., Váczi, P., Hájek, J., & Smykla, J. (2007). Low-temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria elegans. Polar Biology, 31, 47–51.
doi: 10.1007/s00300-007-0331-x
Siddiqui, K. S., Williams, T. J., Wilkins, D., Yau, S., Allen, M. A., Brown, M. V., Lauro, F. M., & Cavicchioli, R. (2013). Psychrophiles. Annual Review of Earth and Planetary Sciences, 41, 87–115.
doi: 10.1146/annurev-earth-040610-133514
Chintalapati, S., Kiran, M. D. & Shivaji, S. (2004). Role of membrane lipid fatty acids in cold adaptation. Molecular and Cellular Biology (Noisy-Le-Grand), 50, 631–642.
Russell, N. J. (1997). Psychrophilic bacteria–Molecular adaptations of membrane lipids. Comparative Biochemistry and Physiology Part A, Physiology, 118, 489–493.
pubmed: 9406431
doi: 10.1016/S0300-9629(97)87354-9
Russell, N. J. (2008). Membrane components and cold sensing. In R. Margesin, F. Schinner, J-C. Marx, & C. Gerday (Eds.), Psychrophiles: From biodiversity to biotechnology (Vol. 11, pp. 177–190) Berlin, Heidelberg: Springer.
Yoshida, K., Hashimoto, M., Hori, R., Adachi, T., Okuyama, H., Orikasa, Y., Nagamine, T., Shimizu, S., Ueno, A., & Morita, N. (2016). Bacterial long-chain polyunsaturated fatty acids: Their biosynthetic genes, functions, and practical use. Marine Drugs, 14, 94.
pubmed: 27187420
pmcid: 4882568
doi: 10.3390/md14050094
Pandey, N., Jain, R., Pandey, A., & Tamta, S. (2018). Optimisation and characterisation of the orange pigment produced by a cold adapted strain of Penicillium sp. (GBPI_P155) isolated from mountain ecosystem. Mycology, 9, 81–92.
pubmed: 30123664
pmcid: 6059051
doi: 10.1080/21501203.2017.1423127
Mykytczuk, N. C., Foote, S. J., Omelon, C. R., Southam, G., Greer, C. W., & Whyte, L. G. (2013). Bacterial growth at -15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME Journal, 7, 1211–1226.
pubmed: 23389107
pmcid: 3660685
doi: 10.1038/ismej.2013.8
Rodrigues, D. F., Ivanova, N., He, Z., Huebner, M., Zhou, J., & Tiedje, J. M. (2008). Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: A genome and transcriptome approach. BMC Genomics, 9, 547.
pubmed: 19019206
pmcid: 2615787
doi: 10.1186/1471-2164-9-547
Tribelli, P. M., & López, N. I. (2018). Reporting key features in cold-adapted bacteria. Life (Basel), 8, 8.
pubmed: 29534000
Piette, F., D’Amico, S., Mazzucchelli, G., Danchin, A., Leprince, P., & Feller, G. (2011). Life in the cold: A proteomic study of cold-repressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Applied and Environment Microbiology, 77, 3881–3883.
doi: 10.1128/AEM.02757-10
Médigue, C., Krin, E., Pascal, G., Barbe, V., Bernsel, A., Bertin, P. N., Cheung, F., Cruveiller, S., D’Amico, S., Duilio, A., Fang, G., Feller, G., Ho, C., Mangenot, S., Marino, G., Nilsson, J., Parrilli, E., Rocha, E. P., Rouy, Z., … Danchin, A. (2005). Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Research, 15, 1325–1335.
pubmed: 16169927
pmcid: 1240074
doi: 10.1101/gr.4126905
Tribelli, P. M., Solar Venero, E. C., Ricardi, M. M., Gómez-Lozano, M., Raiger Iustman, L. J., Molin, S., & López, N. I. (2015). Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the Antarctic bacterium Pseudomonas extremaustralis. PLoS ONE, 10, e0145353.
pubmed: 26671564
pmcid: 4686015
doi: 10.1371/journal.pone.0145353
Ayala-del-Río, H. L., Chain, P. S., Grzymski, J. J., Ponder, M. A., Ivanova, N., Bergholz, P. W., Di Bartolo, G., Hauser, L., Land, M., Bakermans, C., Rodrigues, D., Klappenbach, J., Zarka, D., Larimer, F., Richardson, P., Murray, A., Thomashow, M., & Tiedje, J. M. (2010). The genome sequence of Psychrobacter arcticus 273–4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Applied and Environment Microbiology, 76, 2304–2312.
doi: 10.1128/AEM.02101-09
Godin-Roulling, A., Schmidpeter, P. A., Schmid, F. X., & Feller, G. (2015). Functional adaptations of the bacterial chaperone trigger factor to extreme environmental temperatures. Environmental Microbiology, 17, 2407–2420.
pubmed: 25389111
doi: 10.1111/1462-2920.12707
Baldwin, R. L. (2008). The search for folding intermediates and the mechanism of protein folding. Annual Review of Biophysics, 37, 1–21.
pubmed: 18573070
doi: 10.1146/annurev.biophys.37.032807.125948
Lim, J., Thomas, T., & Cavicchioli, R. (2000). Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcoides burtonii. Journal of Molecular Biology, 297, 553–567.
pubmed: 10731411
doi: 10.1006/jmbi.2000.3585
Bar Dolev, M., Braslavsky, I., & Davies, P. L. (2016). Ice-binding proteins and their function. Annual Review of Biochemistry, 85, 515–542.
pubmed: 27145844
doi: 10.1146/annurev-biochem-060815-014546
Voets, I. K. (2017). From ice-binding proteins to bio-inspired antifreeze materials. Soft Matter, 13, 4808–4823.
pubmed: 28657626
pmcid: 5708349
doi: 10.1039/C6SM02867E
Pummer, B., Budke, C., Augustin-Bauditz, S., Niedermeier, D., Felgitsch, L., Kampf, C., Huber, R., Liedl, K., Loerting, T., Moschen, T., Schauperl, M., Tollinger, M., Morris, C., Wex, H., Grothe, H., Pöschl, U., Koop, T., & Fröhlich-Nowoisky, J. (2015). Ice nucleation by water-soluble macromolecules. Atmospheric Chemistry and Physics, 15, 4077–4091.
doi: 10.5194/acp-15-4077-2015
Pandey, R., Usui, K., Livingstone, R. A., Fischer, S. A., Pfaendtner, J., Backus, E. H., Nagata, Y., Fröhlich-Nowoisky, J., Schmüser, L., Mauri, S., Scheel, J. F., Knopf, D. A., Pöschl, U., Bonn, M., & Weidner, T. (2016). Ice-nucleating bacteria control the order and dynamics of interfacial water. Science Advances, 2, e1501630.
pubmed: 27152346
pmcid: 4846457
doi: 10.1126/sciadv.1501630
Ghobakhlou, A. F., Johnston, A., Harris, L., Antoun, H., & Laberge, S. (2015). Microarray transcriptional profiling of Arctic Mesorhizobium strain N33 at low temperature provides insights into cold adaption strategies. BMC Genomics, 16, 383.
pubmed: 25975821
pmcid: 4432818
doi: 10.1186/s12864-015-1611-4
Goordial, J., Raymond-Bouchard, I., Zolotarov, Y., de Bethencourt, L., Ronholm, J., Shapiro, N., Woyke, T., Stromvik, M., Greer, C. W., Bakermans, C. and Whyte, L. (2016) Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica. FEMS Microbiology Ecology, 92, fiv154.
Ewert, M., & Deming, J. W. (2013). Sea ice microorganisms: Environmental constraints and extracellular responses. Biology (Basel), 2, 603–628.
pubmed: 24832800
Deming, J. W., & Young, J. N. (2017). The role of exopolysaccharides in microbial adaptation to cold habitats. In R. Margesin (Ed.), Psychrophiles: From biodiversity to biotechnology, (vol. 12, pp. 259–284). Springer International Publishing.
Perfumo, A., Banat, I. M., & Marchant, R. (2018). Going green and cold: Biosurfactants from low-temperature environments to biotechnology applications. Trends in Biotechnology, 36, 277–289.
pubmed: 29428461
doi: 10.1016/j.tibtech.2017.10.016
Parvizpour, S., Razmara, J., Jomah, A. F., Shamsir, M. S., & Illias, R. M. (2015). Structural prediction of a novel laminarinase from the psychrophilic Glaciozyma antarctica PI12 and its temperature adaptation analysis. Journal of Molecular Modeling, 21, 63.
pubmed: 25721655
doi: 10.1007/s00894-015-2617-1
Paredes, D. I., Watters, K., Pitman, D. J., Bystroff, C., & Dordick, J. S. (2011). Comparative void-volume analysis of psychrophilic and mesophilic enzymes: Structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility. BMC Structural Biology, 11, 42.
pubmed: 22013889
pmcid: 3224250
doi: 10.1186/1472-6807-11-42
Hamdan, A. (2018). Psychrophiles: Ecological significance and potential industrial application. South African Journal of Science, 114, 6.
doi: 10.17159/sajs.2018/20170254
Bjelic, S., Brandsdal, B. O., & Aqvist, J. (2008). Cold adaptation of enzyme reaction rates. Biochemistry, 47, 10049–10057.
pubmed: 18759500
doi: 10.1021/bi801177k
Singh, D., Rawat, S., Waseem, M., Gupta, S., Lynn, A., Nitin, M., Ramchiary, N., & Sharma, K. K. (2016). Molecular modeling and simulation studies of recombinant laccase from Yersinia enterocolitica suggests significant role in the biotransformation of non-steroidal anti-inflammatory drugs. Biochemical and Biophysical Research Communications, 469, 306–312.
pubmed: 26631965
doi: 10.1016/j.bbrc.2015.11.096
Zanphorlin, L. M., de Giuseppe, P. O., Honorato, R. V., Tonoli, C. C., Fattori, J., Crespim, E., de Oliveira, P. S., Ruller, R., & Murakami, M. T. (2016). Oligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7. Science and Reports, 6, 23776.
doi: 10.1038/srep23776
Karan, R., Mathew, S., Muhammad, R., Bautista, D. B., Vogler, M., Eppinger, J., Oliva, R., Cavallo, L., Arold, S. T., & Rueping, M. (2020). Understanding high-salt and cold adaptation of a polyextremophilic enzyme. Microorganisms, 8, 1594.
De Prada, P., & Brenchley, J. E. (1997). Purification and characterization of two extracellular alkaline phosphatases from a psychrophilic arthrobacter isolate. Applied and Environment Microbiology, 63, 2928–2931.
doi: 10.1128/aem.63.7.2928-2931.1997
Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59, 143–169.
pubmed: 7535888
pmcid: 239358
doi: 10.1128/mr.59.1.143-169.1995
Cavicchioli, R., Charlton, T., Ertan, H., Mohd Omar, S., Siddiqui, K. S., & Williams, T. J. (2011). Biotechnological uses of enzymes from psychrophiles. Microbial Biotechnology, 4, 449–460.
pubmed: 21733127
pmcid: 3815257
doi: 10.1111/j.1751-7915.2011.00258.x
Zhu, D., Adebisi, W. A., Ahmad, F., Sethupathy, S., Danso, B., & Sun, J. (2020). Recent development of extremophilic bacteria and their application in biorefinery. Front Bioeng Biotechnol, 8, 483.
pubmed: 32596215
pmcid: 7303364
doi: 10.3389/fbioe.2020.00483
Liu, Y., Ji, M., Yu, T., Zaugg, J., Anesio, A. M., Zhang, Z., Hu, S., Hugenholtz, P., Liu, K., Liu, P., Chen, Y., Luo, Y., & Yao, T. (2022). A genome and gene catalog of glacier microbiomes. Nature Biotechnology, 40, 1341–1348.
pubmed: 35760913
doi: 10.1038/s41587-022-01367-2
Madhavan, A., Sindhu, R., Parameswaran, B., Sukumaran, R. K., & Pandey, A. (2017). Metagenome analysis: A powerful tool for enzyme bioprospecting. Applied Biochemistry and Biotechnology, 183, 636–651.
pubmed: 28815469
doi: 10.1007/s12010-017-2568-3
Fang, Z. M., Li, T. L., Chang, F., Zhou, P., Fang, W., Hong, Y. Z., Zhang, X. C., Peng, H., & Xiao, Y. Z. (2012). A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. Bioresource Technology, 111, 36–41.
pubmed: 22377476
doi: 10.1016/j.biortech.2012.01.172
Thakur, M., Sharma, N., Rai, A. K., & Singh, S. P. (2021). A novel cold-active type I pullulanase from a hot-spring metagenome for effective debranching and production of resistant starch. Bioresource Technology, 320, 124288.
pubmed: 33120064
doi: 10.1016/j.biortech.2020.124288
Profiti, G., Martelli, P. L., & Casadio, R. (2017). The Bologna annotation resource (BAR 3.0): Improving protein functional annotation. Nucleic Acids Research, 45, W285–W290.
pubmed: 28453653
pmcid: 5570247
doi: 10.1093/nar/gkx330
Prestat, E., David, M. M., Hultman, J., Taş, N., Lamendella, R., Dvornik, J., Mackelprang, R., Myrold, D. D., Jumpponen, A., Tringe, S. G., Holman, E., Mavromatis, K., & Jansson, J. K. (2014). FOAM (functional ontology assignments for metagenomes): A hidden Markov model (HMM) database with environmental focus. Nucleic Acids Research, 42, e145–e145.
pubmed: 25260589
pmcid: 4231724
doi: 10.1093/nar/gku702
Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M. C., Rattei, T., Mende, D. R., Sunagawa, S., Kuhn, M., Jensen, L. J., von Mering, C., & Bork, P. (2015). eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Research, 44, D286–D293.
pubmed: 26582926
pmcid: 4702882
doi: 10.1093/nar/gkv1248
Siriwat, W., Kalapanulak, S., Suksangpanomrung, M., & Saithong, T. (2018). Unlocking conserved and diverged metabolic characteristics in cassava carbon assimilation via comparative genomics approach. Science and Reports, 8, 16593.
doi: 10.1038/s41598-018-34730-y
Vieites, J. M., Guazzaroni, M. E., Beloqui, A., Golyshin, P. N., & Ferrer, M. (2009). Metagenomics approaches in systems microbiology. FEMS Microbiology Reviews, 33, 236–255.
pubmed: 19054115
doi: 10.1111/j.1574-6976.2008.00152.x
Simon, C., Herath, J., Rockstroh, S., & Daniel, R. (2009). Rapid identification of genes encoding DNA polymerases by function-based screening of metagenomic libraries derived from glacial ice. Applied and Environment Microbiology, 75, 2964–2968.
doi: 10.1128/AEM.02644-08
Chen, Q., Xiao, Y., Zhang, W., Stressler, T., Fischer, L., Jiang, B., & Mu, W. (2020). Computer-aided search for a cold-active cellobiose 2-epimerase. Journal of Dairy Science, 103, 7730–7741.
pubmed: 32684457
doi: 10.3168/jds.2020-18153
Tsuruta, H., Tsuneta, S. T., Ishida, Y., Watanabe, K., Uno, T., & Aizono, Y. (1998). Purification and some characteristics of phosphatase of a psychrophile. The Journal of Biochemistry, 123, 219–225.
pubmed: 9538195
doi: 10.1093/oxfordjournals.jbchem.a021925
Santiago, M., Ramírez-Sarmiento, C. A., Zamora, R. A., & Parra, L. P. (2016). Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Frontiers in Microbiology, 7, 1408.
pubmed: 27667987
pmcid: 5016527
doi: 10.3389/fmicb.2016.01408
Mitraki, A., Fane, B., Haase-Pettingell, C., Sturtevant, J., & King, J. (1991). Global suppression of protein folding defects and inclusion body formation. Science, 253, 54–58.
pubmed: 1648264
doi: 10.1126/science.1648264
Xu, H., Wang, Q., Zhang, Z., Yi, L., Ma, L., & Zhai, C. (2019). A simplified method to remove fusion tags from a xylanase of Bacillus sp. HBP8 with HRV 3C protease. Enzyme and Microbial Technology, 123, 15–20.
pubmed: 30686346
doi: 10.1016/j.enzmictec.2019.01.004
Niiranen, L., Espelid, S., Karlsen, C. R., Mustonen, M., Paulsen, S. M., Heikinheimo, P., & Willassen, N. P. (2007). Comparative expression study to increase the solubility of cold adapted Vibrio proteins in Escherichia coli. Protein Expression and Purification, 52, 210–218.
pubmed: 17064934
doi: 10.1016/j.pep.2006.09.005
Parra, L. P., Reyes, F., Acevedo, J. P., Salazar, O., Andrews, B. A., & Asenjo, J. A. (2008). Cloning and fusion expression of a cold-active lipase from marine Antarctic origin. Enzyme and Microbial Technology, 42, 371–377.
doi: 10.1016/j.enzmictec.2007.11.003
Whitley, D., Goldberg, S. P., & Jordan, W. D. (1999). Heat shock proteins: A review of the molecular chaperones. Journal of Vascular Surgery, 29, 748–751.
pubmed: 10194511
doi: 10.1016/S0741-5214(99)70329-0
Hartl, F. U., Bracher, A., & Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature, 475, 324–332.
pubmed: 21776078
doi: 10.1038/nature10317
de Marco, A. (2007). Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nature Protocols, 2, 2632–2639.
pubmed: 17948006
doi: 10.1038/nprot.2007.400
Ferrer, M., Chernikova, T. N., Timmis, K. N., & Golyshin, P. N. (2004). Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain. Applied and Environment Microbiology, 70, 4499–4504.
doi: 10.1128/AEM.70.8.4499-4504.2004
Kim, H. W., Wi, A. R., Jeon, B. W., Lee, J. H., Shin, S. C., Park, H., & Jeon, S. J. (2015). Cold adaptation of a psychrophilic chaperonin from Psychrobacter sp. and its application for heterologous protein expression. Biotechnology Letters, 37, 1887–1893.
pubmed: 26003095
doi: 10.1007/s10529-015-1860-y
Qing, G., Ma, L. C., Khorchid, A., Swapna, G. V., Mal, T. K., Takayama, M. M., Xia, B., Phadtare, S., Ke, H., Acton, T., Montelione, G. T., Ikura, M., & Inouye, M. (2004). Cold-shock induced high-yield protein production in Escherichia coli. Nature Biotechnology, 22, 877–882.
pubmed: 15195104
doi: 10.1038/nbt984
Shuo-shuo, C., Xue-zheng, L., & Ji-hong, S. (2011). Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Protein Expression and Purification, 77, 166–172.
pubmed: 21272645
doi: 10.1016/j.pep.2011.01.009
Cusano, A. M., Parrilli, E., Marino, G., & Tutino, M. L. (2006). A novel genetic system for recombinant protein secretion in the Antarctic Pseudoalteromonas haloplanktis TAC125. Microbial Cell Factories, 5, 40.
pubmed: 17169153
pmcid: 1766363
doi: 10.1186/1475-2859-5-40
Zhao, D.-L., Yu, Z.-C., Li, P.-Y., Wu, Z.-Y., Chen, X.-L., Shi, M., Yu, Y., Chen, B., Zhou, B.-C., & Zhang, Y.-Z. (2011). Characterization of a cryptic plasmid pSM429 and its application for heterologous expression in psychrophilic Pseudoalteromonas. Microbial Cell Factories, 10, 30.
pubmed: 21542941
pmcid: 3112385
doi: 10.1186/1475-2859-10-30
Mao, Y., Yin, Y., Zhang, L., Alias, S. A., Gao, B., & Wei, D. (2015). Development of a novel Aspergillus uracil deficient expression system and its application in expressing a cold-adapted α-amylase gene from Antarctic fungi Geomyces pannorum. Process Biochemistry, 50, 1581–1590.
doi: 10.1016/j.procbio.2015.06.016
Kobori, H., Sullivan, C. W., & Shizuya, H. (1984). Heat-labile alkaline phosphatase from Antarctic bacteria: Rapid 5′ end-labeling of nucleic acids. Proc Natl Acad Sci U S A, 81, 6691–6695.
pubmed: 16593525
pmcid: 391996
doi: 10.1073/pnas.81.21.6691
Olsen, R. L., Øverbø, K., & Myrnes, B. (1991). Alkaline phophatase from the hepatopancreas of shrimp (Pandalus borealis): A dimeric enzyme with catalytically active subunits. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 99, 755–761.
doi: 10.1016/0305-0491(91)90139-5
Rina, M., Pozidis, C., Mavromatis, K., Tzanodaskalaki, M., Kokkinidis, M., & Bouriotis, V. (2000). Alkaline phosphatase from the Antarctic strain TAB5. Properties and psychrophilic adaptations. European Journal of Biochemistry, 267, 1230–1238.
pubmed: 10672035
doi: 10.1046/j.1432-1327.2000.01127.x
Recombinant alkaline phosphatase and uses thereof Patent. (2013). US Patent 8486665. Available from: https://patents.justia.com/patent/8486665 . Accessed 31 Dec 2023
de Prada, P., Loveland-Curtze, J., & Brenchley, J. E. (1996). Production of two extracellular alkaline phosphatases by a psychrophilic arthrobacter strain. Applied and Environment Microbiology, 62, 3732–3738.
doi: 10.1128/aem.62.10.3732-3738.1996
Ishida, Y., Tsuruta, H., Tsuneta, S. T., Uno, T., Watanabe, K., & Aizono, Y. (1998). Characteristics of psychrophilic alkaline phosphatase. Bioscience, Biotechnology, and Biochemistry, 62, 2246–2250.
pubmed: 27393594
doi: 10.1271/bbb.62.2246
Hauksson, J. B., Andrésson, O. S., & Ásgeirsson, B. (2000). Heat-labile bacterial alkaline phosphatase from a marine Vibrio sp. Enyzme and Microbial Technology, 27, 66–73.
doi: 10.1016/S0141-0229(00)00152-6
Asgeirsson, B., Hauksson, J. B., & Gunnarsson, G. H. (2000). Dissociation and unfolding of cold-active alkaline phosphatase from Atlantic cod in the presence of guanidinium chloride. European Journal of Biochemistry, 267, 6403–6412.
pubmed: 11029583
doi: 10.1046/j.1432-1327.2000.01728.x
Lee, D.-H., Choi, S.-L., Rha, E., Kim, S. J., Yeom, S.-J., Moon, J.-H., & Lee, S.-G. (2015). A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments. BMC Biotechnology, 15, 1.
pubmed: 25636680
pmcid: 4335783
doi: 10.1186/s12896-015-0115-2
Kim, H., Park, A. K., Lee, J. H., Kim, H.-W., & Shin, S. C. (2018). Complete genome sequence of Colwellia hornerae PAMC 20917, a cold-active enzyme-producing bacterium isolated from the Arctic Ocean sediment. Marine Genomics, 41, 54–56.
doi: 10.1016/j.margen.2018.03.004
Golotin, V., Balabanova, L., Likhatskaya, G., & Rasskazov, V. (2015). Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina. Marine Biotechnology (New York, N.Y.), 17, 130–143.
pubmed: 25260971
doi: 10.1007/s10126-014-9601-0
Sarmiento, F., Peralta, R., & Blamey, J. M. (2015). Cold and hot extremozymes: Industrial relevance and current trends. Frontiers in Bioengineering and Biotechnology, 3, 148.
pubmed: 26539430
pmcid: 4611823
doi: 10.3389/fbioe.2015.00148
Sobek, H., Schmidt, M., Frey, B., & Kaluza, K. (1996). Heat-labile uracil-DNA glycosylase: Purification and characterization. FEBS Letters, 388, 1–4.
pubmed: 8654578
doi: 10.1016/0014-5793(96)00444-9
Lanes, O., Guddal, P. H., Gjellesvik, D. R., & Willassen, N. P. (2000). Purification and characterization of a cold-adapted uracil-DNA glycosylase from Atlantic cod (Gadus morhua). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 127, 399–410.
doi: 10.1016/S0305-0491(00)00271-6
Kim, G. A., Lee, M. S., Sun, Y., Lee, B. D., Lee, J. I., Lee, J.-H., & Kwon, S.-T. (2008). Characterization of cold-active uracil-DNA glycosylase from Bacillus sp. HJ171 and its use for contamination control in PCR. Applied Microbiology and Biotechnology, 80, 785–794.
pubmed: 18626641
doi: 10.1007/s00253-008-1585-0
Lee, M. S., Kim, G. A., Seo, M. S., Lee, J. H., & Kwon, S. T. (2009). Characterization of heat-labile uracil-DNA glycosylase from Psychrobacter sp. HJ147 and its application to the polymerase chain reaction. Biotechnology and Applied Biochemistry, 52, 167–175.
pubmed: 18412541
doi: 10.1042/BA20080013
Kim, G. A., Sun, Y., Song, J.-G., Bae, H., Kim, J.-H., & Kwon, S.-T. (2009). Properties of cold-active uracil-DNA glycosylase from Photobacterium aplysiae GMD509, and its PCR application for carryover contamination control. Enzyme and Microbial Technology, 44, 263–268.
doi: 10.1016/j.enzmictec.2008.12.006
Mangiagalli, M., Brocca, S., Orlando, M., & Lotti, M. (2020). The “cold revolution”. Present and future applications of cold-active enzymes and ice-binding proteins. New Biotechnology, 55, 5–11.
pubmed: 31546027
doi: 10.1016/j.nbt.2019.09.003
Shiomi, K., Midorikawa, S., Ishida, M., Nagashima, Y., & Nagai, H. (2004). Plancitoxins, lethal factors from the crown-of-thorns starfish Acanthaster planci, are deoxyribonucleases II. Toxicon, 44, 499–506.
pubmed: 15450924
doi: 10.1016/j.toxicon.2004.06.012
Øverbø, K., & Myrnes, B. (2006). Deoxyribonuclease II from the Icelandic scallop (Chlamys islandica): Isolation and partial characterization. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 143, 315–318.
doi: 10.1016/j.cbpb.2005.12.003
Sulthana, S., Rajyaguru, P. I., Mittal, P., & Ray, M. K. (2011). rnr gene from the Antarctic bacterium Pseudomonas syringae Lz4W, encoding a psychrophilic RNase R. Applied and Environment Microbiology, 77, 7896–7904.
doi: 10.1128/AEM.05683-11
Wang, Y., Hou, Y., Nie, P., Wang, Y., Ren, X., Wei, Q., & Wang, Q. (2019). A novel cold-adapted and salt-tolerant RNase R from Antarctic Sea-Ice bacterium Psychrobacter sp. ANT206. Molecules, 24, 2229.
pubmed: 31207974
pmcid: 6630635
doi: 10.3390/molecules24122229
Maciejewska, N., Walkusz, R., Olszewski, M., & Szymańska, A. (2019). New nuclease from extremely psychrophilic microorganism Psychromonas ingrahamii 37: Identification and characterization. Molecular Biotechnology, 61, 122–133.
pubmed: 30539415
doi: 10.1007/s12033-018-0142-z
Microorganism-derived psychrophilic endonuclease. (2011). US Patent No 8034597 B2. Available from: https://pubchem.ncbi.nlm.nih.gov/patent/US-8034597-B2 . Accessed 31 Dec 2023
Xue, Y., Braslavsky, I., & Quake, S. R. (2021). Temperature effect on polymerase fidelity. Journal of Biological Chemistry, 297, 101270.
pubmed: 34695416
pmcid: 8592868
doi: 10.1016/j.jbc.2021.101270
Zhu, B., Tabor, S., Raytcheva, D. A., Hernandez, A., King, J. A., & Richardson, C. C. (2013). The RNA polymerase of marine cyanophage Syn5. Journal of Biological Chemistry, 288, 3545–3552.
pubmed: 23258537
doi: 10.1074/jbc.M112.442350
Zhu, B., Tabor, S., & Richardson, C. C. (2013). Syn5 RNA polymerase synthesizes precise run-off RNA products. Nucleic Acids Research, 42, e33–e33.
pubmed: 24285303
pmcid: 3950665
doi: 10.1093/nar/gkt1193
Wang, G., Cheng, R., Chen, Q., Xu, Y., Yu, B., Zhu, B., Yin, H., & Xia, H. (2022). mRNA produced by VSW-3 RNAP has high-level translation efficiency with low inflammatory stimulation. Cell Insight, 1, 100056.
pubmed: 37193555
pmcid: 10120321
doi: 10.1016/j.cellin.2022.100056
Xia, H., Yu, B., Jiang, Y., Cheng, R., Lu, X., Wu, H., & Zhu, B. (2022). Psychrophilic phage VSW-3 RNA polymerase reduces both terminal and full-length dsRNA byproducts in in vitro transcription. RNA Biology, 19, 1130–1142.
pubmed: 36299232
pmcid: 9624206
doi: 10.1080/15476286.2022.2139113
Ernst, F. G. M., Erber, L., Sammler, J., Jühling, F., Betat, H., & Mörl, M. (2018). Cold adaptation of tRNA nucleotidyltransferases: A tradeoff in activity, stability and fidelity. RNA Biology, 15, 144–155.
pubmed: 29099323
doi: 10.1080/15476286.2017.1391445
Georlette, D., Jónsson, Z. O., Van Petegem, F., Chessa, J., Van Beeumen, J., Hübscher, U., & Gerday, C. (2000). A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures. European Journal of Biochemistry, 267, 3502–3512.
pubmed: 10848966
doi: 10.1046/j.1432-1327.2000.01377.x
Williamson, A., & Pedersen, H. (2014). Recombinant expression and purification of an ATP-dependent DNA ligase from Aliivibrio salmonicida. Protein Expression and Purification, 97, 29–36.
pubmed: 24582823
doi: 10.1016/j.pep.2014.02.008
Duplantis, B. N., Osusky, M., Schmerk, C. L., Ross, D. R., Bosio, C. M., & Nano, F. E. (2010). Essential genes from Arctic bacteria used to construct stable, temperature-sensitive bacterial vaccines. Proceedings of the National Academy of Sciences, 107, 13456–13460.
doi: 10.1073/pnas.1004119107
ArcticZymes-technologies. ArcticZymes Proteinase. Available from: https://www.arcticzymes.com/product-details/arcticzymes-proteinase . Accessed 31 Dec 2023
Clarsund, M., Blom, U., & Gardulf, A. (2016). Evaluation of ColdZyme® Mouth Spray on prevention of upper respiratory tract infections in a boy with primary immunodeficiency: A case report. Journal of Medical Case Reports, 10, 302.
pubmed: 27799071
pmcid: 5088673
doi: 10.1186/s13256-016-1085-2
Brunel, C., & Cathala, G. (1973). Activation and inhibition processes of alkaline phosphatase from bovine brain by metal ions (Mg 2+ and Zn 2+ ). Biochimica et Biophysica Acta, 309, 104–115.
pubmed: 4708668
doi: 10.1016/0005-2744(73)90322-7
Cathala, G., & Brunel, C. (1975). Bovine kidney alkaline phosphatase. Catalytic properties, subunit interactions in the catalytic process, and mechanism of Mg2+ stimulation. Journal of Biological Chemistry, 250, 6046–6053.
pubmed: 238994
doi: 10.1016/S0021-9258(19)41156-3
Kim, E. E., & Wyckoff, H. W. (1991). Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. Journal of Molecular Biology, 218, 449–464.
pubmed: 2010919
doi: 10.1016/0022-2836(91)90724-K
Stec, B., Holtz, K. M., & Kantrowitz, E. R. (2000). A revised mechanism for the alkaline phosphatase reaction involving three metal ions. Journal of Molecular Biology, 299, 1303–1311.
pubmed: 10873454
doi: 10.1006/jmbi.2000.3799
Engstrom, L. (1961). Studies on calf-intestinal alkaline phosphatase. I. Chromatographic purification, microheterogeneity and some other properties of the purified enzyme. Biochimica et Biophysica Acta, 52, 36–48.
pubmed: 13890304
doi: 10.1016/0006-3002(61)90901-5
Hoffman, L. M., & Jendrisak, J. (1990). Heat-labile phosphatase simplifies the preparation of dephosphorylated vector DNA. Gene, 88, 97–99.
pubmed: 2187748
doi: 10.1016/0378-1119(90)90064-X
Tsigos, I., Mavromatis, K., Tzanodaskalaki, M., Pozidis, C., Kokkinidis, M., & Bouriotis, V. (2001). Engineering the properties of a cold active enzyme through rational redesign of the active site. European Journal of Biochemistry, 268, 5074–5080.
pubmed: 11589698
doi: 10.1046/j.0014-2956.2001.02432.x
Mavromatis, K., Tsigos, I., Tzanodaskalaki, M., Kokkinidis, M., & Bouriotis, V. (2002). Exploring the role of a glycine cluster in cold adaptation of an alkaline phosphatase. European Journal of Biochemistry, 269, 2330–2335.
pubmed: 11985615
doi: 10.1046/j.1432-1033.2002.02895.x
Wang, E., Koutsioulis, D., Leiros, H. K., Andersen, O. A., Bouriotis, V., Hough, E., & Heikinheimo, P. (2007). Crystal structure of alkaline phosphatase from the Antarctic bacterium TAB5. Journal of Molecular Biology, 366, 1318–1331.
pubmed: 17198711
doi: 10.1016/j.jmb.2006.11.079
Koutsioulis, D., Wang, E., Tzanodaskalaki, M., Nikiforaki, D., Deli, A., Feller, G., Heikinheimo, P., & Bouriotis, V. (2008). Directed evolution on the cold adapted properties of TAB5 alkaline phosphatase. Protein Engineering, Design & Selection, 21, 319–327.
doi: 10.1093/protein/gzn009
Koutsioulis, D., Lyskowski, A., Mäki, S., Guthrie, E., Feller, G., Bouriotis, V., & Heikinheimo, P. (2010). Coordination sphere of the third metal site is essential to the activity and metal selectivity of alkaline phosphatases. Protein Science, 19, 75–84.
pubmed: 19916164
doi: 10.1002/pro.284
Lu, Z., Chen, W., Liu, R., Hu, X., & Ding, Y. (2010). A novel method for high-level production of psychrophilic TAB5 alkaline phosphatase. Protein Expression and Purification, 74, 217–222.
pubmed: 20600939
doi: 10.1016/j.pep.2010.06.010
Morrison, H. (2021). Uracil-DNA glycosylase. In H. Morrison (Ed.), Enzyme active sites and their reaction mechanisms (Vol. 39, pp. 239–244). Academic Press.
Visnes, T., Doseth, B., Pettersen, H. S., Hagen, L., Sousa, M. M., Akbari, M., Otterlei, M., Kavli, B., Slupphaug, G., & Krokan, H. E. (2009). Uracil in DNA and its processing by different DNA glycosylases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 563–568.
pubmed: 19008197
doi: 10.1098/rstb.2008.0186
Barnes, D. E., & Lindahl, T. (2004). Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annual Review of Genetics, 38, 445–476.
pubmed: 15568983
doi: 10.1146/annurev.genet.38.072902.092448
Tu, J., Chen, R., Yang, Y., Cao, W., & Xie, W. (2019). Suicide inactivation of the uracil DNA glycosylase UdgX by covalent complex formation. Nature Chemical Biology, 15, 615–622.
pubmed: 31101915
doi: 10.1038/s41589-019-0290-x
Slupphaug, G., Mol, C. D., Kavli, B., Arvai, A. S., Krokan, H. E., & Tainer, J. A. (1996). A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature, 384, 87–92.
pubmed: 8900285
doi: 10.1038/384087a0
Hsieh, K., Mage, P. L., Csordas, A. T., Eisenstein, M., & Soh, H. T. (2014). Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP). Chemical Communications (Cambridge, England), 50, 3747–3749.
pubmed: 24577617
doi: 10.1039/c4cc00540f
Tang, Y., Chen, H., & Diao, Y. (2016). Advanced uracil DNA glycosylase-supplemented real-time reverse transcription loop-mediated isothermal amplification (UDG-rRT-LAMP) method for universal and specific detection of Tembusu virus. Science and Reports, 6, 27605.
doi: 10.1038/srep27605
Hu, Y. (2016). Regulatory concern of polymerase chain reaction (PCR) carryover contamination. In A. Samadikuchaksaraei (Ed.), Polymerase chain reaction for biomedical applications (vol. 4, pp. 58–68). InTech.
Lanes, O., Leiros, I., Smalås, A. O., & Willassen, N. (2002). Identification, cloning, and expression of uracil-DNA glycosylase from Atlantic cod (Gadus morhua): Characterization and homology modeling of the cold-active catalytic domain. Extremophiles, 6, 73–86.
pubmed: 11878565
doi: 10.1007/s007920100225
Olufsen, M., Smalås, A. O., Moe, E., & Brandsdal, B. O. (2005). Increased flexibility as a strategy for cold adaptation: A comparative molecular dynamics study of cold- and warm-active uracil DNA glycosylase*. Journal of Biological Chemistry, 280, 18042–18048.
pubmed: 15749696
doi: 10.1074/jbc.M500948200
Assefa, N. G., Niiranen, L., Willassen, N. P., Smalås, A., & Moe, E. (2012). Thermal unfolding studies of cold adapted uracil-DNA N-glycosylase (UNG) from Atlantic cod (Gadus morhua). A comparative study with human UNG. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 161, 60–68.
doi: 10.1016/j.cbpb.2011.09.007
Yang, W. (2011). Nucleases: Diversity of structure, function and mechanism. Quarterly Reviews of Biophysics, 44, 1–93.
pubmed: 20854710
doi: 10.1017/S0033583510000181
Maunders, M. J. (1993). DNA Polymerases (EC 2.7.7.7). In M. M. Burrell (Ed.), Enzymes of molecular biology (Vol. 3, pp. 17–30). Humana Press.
Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., & Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491.
pubmed: 2448875
doi: 10.1126/science.2448875
Lundberg, K. S., Shoemaker, D. D., Adams, M. W., Short, J. M., Sorge, J. A., & Mathur, E. J. (1991). High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene, 108, 1–6.
pubmed: 1761218
doi: 10.1016/0378-1119(91)90480-Y
Kim, S. W., Kim, D. U., Kim, J. K., Kang, L. W., & Cho, H. S. (2008). Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus. International Journal of Biological Macromolecules, 42, 356–361.
pubmed: 18355915
doi: 10.1016/j.ijbiomac.2008.01.010
Meyer, A. S., & Grainger, D. C. (2013). The Escherichia coli nucleoid in stationary phase. In S. Sariaslani, & G. M. Gadd (Eds.), Advances in applied microbiology (Vol. 83, pp. 69–86). Academic Press.
Summers, W. C., & Siegel, R. B. (1970). Transcription of late phage RNA by T7 RNA polymerase. Nature, 228, 1160–1162.
pubmed: 5487240
doi: 10.1038/2281160a0
Cheetham, G. M., Jeruzalmi, D., & Steitz, T. A. (1999). Structural basis for initiation of transcription from an RNA polymerase-promoter complex. Nature, 399, 80–83.
pubmed: 10331394
doi: 10.1038/19999
Eun, H.-M. (1996). Ligases. In H.-M. Eun (Ed.), Enzymology primer for recombinant DNA technology (vol 2, pp. 109–144). Academic Press.
Lehman, I. R. (1974). DNA ligase: Structure, mechanism, and function. Science, 186, 790–797.
pubmed: 4377758
doi: 10.1126/science.186.4166.790
Williamson, A., & Leiros, H. S. (2020). Structural insight into DNA joining: From conserved mechanisms to diverse scaffolds. Nucleic Acids Research, 48, 8225–8242.
pubmed: 32365176
pmcid: 7470946
doi: 10.1093/nar/gkaa307
Sambrook, J. F., Fritsch, E. F., & Maniatis, T. (1983). Molecular cloning: A laboratory manual, (1st Ed). NY: CSH press.
Duplantis, B. N., Puckett, S. M., Rosey, E. L., Ameiss, K. A., Hartman, A. D., Pearce, S. C., & Nano, F. E. (2015). Temperature-sensitive Salmonella enterica Serovar Enteritidis PT13a expressing essential proteins of psychrophilic bacteria. Applied and Environmental Microbiology, 81, 6757–6766.
pubmed: 26187965
pmcid: 4561687
doi: 10.1128/AEM.01953-15
Pinto, C. T., & Nano, F. E. (2015). Stable, temperature-sensitive recombinant strain of Mycobacterium smegmatis generated through the substitution of a psychrophilic ligA gene. FEMS Microbiology Letters, 362, fnv152.
Pankowski, J. A., Puckett, S. M., & Nano, F. E. (2016). Temperature sensitivity conferred by ligA alleles from psychrophilic bacteria upon substitution in mesophilic bacteria and a yeast species. Applied and Environmental Microbiology, 82, 1924–1932.
pubmed: 26773080
pmcid: 4784036
doi: 10.1128/AEM.03890-15
Unciuleac, M. C., Goldgur, Y., & Shuman, S. (2015). Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase. Proceedings of the National Academy of Sciences, 112, 13868–13873.
doi: 10.1073/pnas.1516536112
Pascal, J. M. (2008). DNA and RNA ligases: Structural variations and shared mechanisms. Current Opinion in Structural Biology, 18, 96–105.
pubmed: 18262407
doi: 10.1016/j.sbi.2007.12.008
Nichols, N. M., Tabor, S., & McReynolds, L. A. (2008). RNA ligases. Current Protocols in Molecular Biology, Chapter, 3(Unit3), 15.
Uhlenbeck, O. C., & Gumport, R. I. (1982). 2 T4 RNA ligase. The Enzymes, 15, 31–58.
doi: 10.1016/S1874-6047(08)60274-7
Heckler, T. G., Chang, L. H., Zama, Y., Naka, T., Chorghade, M. S., & Hecht, S. M. (1984). T4 RNA ligase mediated preparation of novel “chemically misacylated” tRNAPheS. Biochemistry, 23(7), 1468–1473.
pubmed: 6372858
doi: 10.1021/bi00302a020
Ho, C. K., Wang, L. K., Lima, C. D., & Shuman, S. (2004). Structure and mechanism of RNA ligase. Structure, 12, 327–339.
pubmed: 14962393
doi: 10.1016/j.str.2004.01.011
Aravin, A., & Tuschl, T. (2005). Identification and characterization of small RNAs involved in RNA silencing. FEBS Letters, 579, 5830–5840.
pubmed: 16153643
doi: 10.1016/j.febslet.2005.08.009
ArcticZymes-technologies. ArcticZymes R2D Ligase. Available from: https://www.arcticzymes.com/product-details/arcticzymes-r2d-ligase-unique-atp-dependent-dsdna-ligase-able-to-join-rna-to-dna . Accessed 31 Dec 2023.
Zhu, D., Wu, Q., & Hua, L. (2019). Industrial Enzymes. In M. Moo-Young (Ed.), Comprehensive biotechnology (3rd Ed., Vol. 3, pp. 1–13). Oxford: Pergamon.
Ebeling, W., Hennrich, N., Klockow, M., Metz, H., Orth, H. D., & Lang, H. (1974). Proteinase K from Tritirachium album Limber. European Journal of Biochemistry, 47, 91–97.
pubmed: 4373242
doi: 10.1111/j.1432-1033.1974.tb03671.x
Rivoal, R., Valette, S., Bekal, S., Gauthier, J.-P., & Yahyaoui, A. (2003). Genetic and phenotypic diversity in the graminaceous cyst nematode complex, inferred from PCR-RFLP of ribosomal DNA and morphometric analysis. European Journal of Plant Pathology, 109, 227–241.
doi: 10.1023/A:1022838806268
Lehmann, R., & Tautz, D. (1994). In situ hybridization to RNA. In L. S. B. Goldstein, & E. A. yrberg (Ed.), Methods in cell biology (Vol. 44, pp. 575–598). Academic Press.
Sajnani, G., & Requena, J. R. (2012). Prions, proteinase K and infectivity. Prion, 6, 430–432.
pubmed: 23044510
pmcid: 3510858
doi: 10.4161/pri.22309
Betzel, C., Bellemann, M., Pal, G. P., Bajorath, J., Saenger, W., & Wilson, K. S. (1988). X-ray and model-building studies on the specificity of the active site of proteinase K. Proteins, 4, 157–164.
pubmed: 3237715
doi: 10.1002/prot.340040302
Bajorath, J., Hinrichs, W., & Saenger, W. (1988). The enzymatic activity of proteinase K is controlled by calcium. European Journal of Biochemistry, 176, 441–447.
pubmed: 3166426
doi: 10.1111/j.1432-1033.1988.tb14301.x
Hedstrom, L. (2002). Serine protease mechanism and specificity. Chemical Reviews, 102, 4501–4524.
pubmed: 12475199
doi: 10.1021/cr000033x
Bhatia, R. K., Ullah, S., Hoque, M. Z., Ahmad, I., Yang, Y.-H., Bhatt, A. K., & Bhatia, S. K. (2021). Psychrophiles: A source of cold-adapted enzymes for energy efficient biotechnological industrial processes. Journal of Environmental Chemical Engineering, 9, 104607.
doi: 10.1016/j.jece.2020.104607
Paunovska, K., Loughrey, D., & Dahlman, J. E. (2022). Drug delivery systems for RNA therapeutics. Nature Reviews Genetics, 23, 265–280.
pubmed: 34983972
pmcid: 8724758
doi: 10.1038/s41576-021-00439-4
Fornbacke, M., & Clarsund, M. (2013). Cold-adapted proteases as an emerging class of therapeutics. Infectious Diseases and Therapy, 2, 15–26.
pubmed: 25135820
pmcid: 4108096
doi: 10.1007/s40121-013-0002-x
Huang, W., Sun, Y. M., Pan, Q., Fang, K., Chen, X. T., Zeng, Z. C., Chen, T. Q., Zhu, S. X., Huang, L. B., Luo, X. Q., Wang, W. T., & Chen, Y. Q. (2022). The snoRNA-like lncRNA LNC-SNO49AB drives leukemia by activating the RNA-editing enzyme ADAR1. Cell Discovery, 8, 117.
pubmed: 36316318
pmcid: 9622897
doi: 10.1038/s41421-022-00460-9
Chen, L., Wang, Y., Lin, J., Song, Z., Wang, Q., Zhao, W., Wang, Y., Xiu, X., Deng, Y., Li, X., Li, Q., Wang, X., Li, J., Liu, X., Liu, K., Zhou, J., Li, K., Liu, Y., Liao, S., … Shan, G. (2022). Exportin 4 depletion leads to nuclear accumulation of a subset of circular RNAs. Nature Communications, 13, 5769.
pubmed: 36182935
pmcid: 9526749
doi: 10.1038/s41467-022-33356-z
Zhang, L., Delgado-Baquerizo, M., Shi, Y., Liu, X., Yang, Y., & Chu, H. (2021). Co-existing water and sediment bacteria are driven by contrasting environmental factors across glacier-fed aquatic systems. Water Research, 198, 117139.
pubmed: 33895591
doi: 10.1016/j.watres.2021.117139
Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25.
doi: 10.1016/j.softx.2015.06.001
Chen, Y., Tian, Q., Wang, H., Ma, R., Han, R., Wang, Y., Ge, H., Ren, Y., Yang, R., Yang, H., Chen, Y., Duan, X., Zhang, L., Gao, J., Gao, L., Yan, X., & Qin, Y. (2022) A manganese-based metal-organic framework as a cold-adapted nanozyme. Advanced Materials e2206421.
Chen, K., Huang, T., Liu, E., Lu, Y., Huo, Z., Mi, L., Zhang, W., & Frazer, I. (2020). The innovation: A journal to see the unseen and change the unchanged. Innovation (Cambridge), 1, 100014.