Feasibility of in vitro calcification plaque disruption using ultrasound-induced microbubble inertial cavitation.
Calcified plaque
Inertial cavitation
Microbubbles
Percutaneous transluminal coronary angioplasty
Ultrasound
Journal
Ultrasonics
ISSN: 1874-9968
Titre abrégé: Ultrasonics
Pays: Netherlands
ID NLM: 0050452
Informations de publication
Date de publication:
04 Jan 2024
04 Jan 2024
Historique:
received:
03
09
2023
revised:
28
12
2023
accepted:
28
12
2023
medline:
7
1
2024
pubmed:
7
1
2024
entrez:
6
1
2024
Statut:
aheadofprint
Résumé
Percutaneous transluminal coronary angioplasty (PTCA) is a clinical method in which plaque-narrowed arteries are widened by inflating an intravascular balloon catheter. However, PTCA remains challenging to apply in calcified plaques since the high pressure required for achieving a therapeutic outcome can result in balloon rupture, vessel rupture, and intimal dissection. To address the problem with PTCA, we hypothesized that a calcified plaque can be disrupted by microbubbles (MBs) inertial cavitation induced by ultrasound (US). This study proposed a columnar US transducer with a novel design to generate inertial cavitation at the lesion site. Experiments were carried out using tubular calcification phantom to mimic calcified plaques. After different parameters of US + MBs treatment (four types of MBs concentration, five types of cycle number, and three types of insonication duration; n = 4 in each group), inflation experiments were performed to examine the efficacy of cavitation for a clinically used balloon catheter. Finally, micro-CT was used to investigate changes in the internal structure of the tubular plaster phantoms. The inflation threshold of the untreated tubular plaster phantoms was > 11 atm, and this was significantly reduced to 7.4 ± 0.7 atm (p = 5.2E-08) using US-induced MBs inertial cavitation at a treatment duration of 20 min with an acoustic pressure of 214 kPa, an MBs concentration of 4.0 × 10
Identifiants
pubmed: 38183758
pii: S0041-624X(23)00314-1
doi: 10.1016/j.ultras.2023.107238
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
107238Informations de copyright
Copyright © 2023 Elsevier B.V. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.