Nonlinear relationship between untraditional lipid parameters and the risk of prediabetes: a large retrospective study based on Chinese adults.

Chinese adults Nonlinearly Prediabetes Untraditional lipid parameters

Journal

Cardiovascular diabetology
ISSN: 1475-2840
Titre abrégé: Cardiovasc Diabetol
Pays: England
ID NLM: 101147637

Informations de publication

Date de publication:
06 Jan 2024
Historique:
received: 07 10 2023
accepted: 25 12 2023
medline: 7 1 2024
pubmed: 7 1 2024
entrez: 6 1 2024
Statut: epublish

Résumé

Abnormal lipid metabolism poses a risk for prediabetes. However, research on lipid parameters used to predict the risk of prediabetes is scarce, and the significance of traditional and untraditional lipid parameters remains unexplored in prediabetes. This study aimed to comprehensively evaluate the association between 12 lipid parameters and prediabetes and their diagnostic value. This cross-sectional study included data from 100,309 Chinese adults with normal baseline blood glucose levels. New onset of prediabetes was the outcome of concern. Untraditional lipid parameters were derived from traditional lipid parameters. Multivariate logistic regression and smooth curve fitting were used to examine the nonlinear relationship between lipid parameters and prediabetes. A two-piecewise linear regression model was used to identify the critical points of lipid parameters influencing the risk of prediabetes. The areas under the receiver operating characteristic curve estimated the predictive value of the lipid parameters. A total of 12,352 participants (12.31%) were newly diagnosed with prediabetes. Following adjustments for confounding covariables, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol were negatively correlated with prediabetes risk. Conversely, total cholesterol, triglyceride (TG), lipoprotein combine index (LCI), atherogenic index of plasma (AIP), non-HDL-C, atherogenic coefficient, Castelli's index-I, remnant cholesterol (RC), and RC/HDL-C ratio displayed positive correlations. In younger adults, females, individuals with a family history of diabetes, and non-obese individuals, LCI, TG, and AIP exhibited higher predictive values for the onset of prediabetes compared to other lipid profiles. Nonlinear associations were observed between untraditional lipid parameters and the risk of prediabetes. The predictive value of untraditional lipid parameters for prediabetes surpassed that of traditional lipid parameters, with LCI emerging as the most effective predictor for prediabetes.

Sections du résumé

BACKGROUND BACKGROUND
Abnormal lipid metabolism poses a risk for prediabetes. However, research on lipid parameters used to predict the risk of prediabetes is scarce, and the significance of traditional and untraditional lipid parameters remains unexplored in prediabetes. This study aimed to comprehensively evaluate the association between 12 lipid parameters and prediabetes and their diagnostic value.
METHODS METHODS
This cross-sectional study included data from 100,309 Chinese adults with normal baseline blood glucose levels. New onset of prediabetes was the outcome of concern. Untraditional lipid parameters were derived from traditional lipid parameters. Multivariate logistic regression and smooth curve fitting were used to examine the nonlinear relationship between lipid parameters and prediabetes. A two-piecewise linear regression model was used to identify the critical points of lipid parameters influencing the risk of prediabetes. The areas under the receiver operating characteristic curve estimated the predictive value of the lipid parameters.
RESULTS RESULTS
A total of 12,352 participants (12.31%) were newly diagnosed with prediabetes. Following adjustments for confounding covariables, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol were negatively correlated with prediabetes risk. Conversely, total cholesterol, triglyceride (TG), lipoprotein combine index (LCI), atherogenic index of plasma (AIP), non-HDL-C, atherogenic coefficient, Castelli's index-I, remnant cholesterol (RC), and RC/HDL-C ratio displayed positive correlations. In younger adults, females, individuals with a family history of diabetes, and non-obese individuals, LCI, TG, and AIP exhibited higher predictive values for the onset of prediabetes compared to other lipid profiles.
CONCLUSION CONCLUSIONS
Nonlinear associations were observed between untraditional lipid parameters and the risk of prediabetes. The predictive value of untraditional lipid parameters for prediabetes surpassed that of traditional lipid parameters, with LCI emerging as the most effective predictor for prediabetes.

Identifiants

pubmed: 38184606
doi: 10.1186/s12933-023-02103-z
pii: 10.1186/s12933-023-02103-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

12

Subventions

Organisme : National Natural Science Foundation of China
ID : NO.82170433
Organisme : Jiangsu Provincial Medical Key Discipline (Laboratory)
ID : ZDXK202207

Informations de copyright

© 2024. The Author(s).

Références

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.
pubmed: 34879977 doi: 10.1016/j.diabres.2021.109119
Li Y, Teng D, Shi X, Qin G, Qin Y, Quan H, Shi B, Sun H, Ba J, Chen B, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ. 2020;369:m997.
pubmed: 32345662 pmcid: 7186854 doi: 10.1136/bmj.m997
Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379(9833):2279–90.
pubmed: 22683128 pmcid: 3891203 doi: 10.1016/S0140-6736(12)60283-9
Cai X, Zhang Y, Li M, Wu JH, Mai L, Li J, Yang Y, Hu Y, Huang Y. Association between prediabetes and risk of all cause mortality and cardiovascular disease: updated meta-analysis. BMJ. 2020;370:m2297.
pubmed: 32669282 pmcid: 7362233 doi: 10.1136/bmj.m2297
Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, Haneuse S, Craft S, Montine TJ, Kahn SE, et al. Glucose levels and risk of dementia. N Engl J Med. 2013;369(6):540–8.
pubmed: 23924004 pmcid: 3955123 doi: 10.1056/NEJMoa1215740
Huang Y, Cai X, Qiu M, Chen P, Tang H, Hu Y, Huang Y. Prediabetes and the risk of cancer: a meta-analysis. Diabetologia. 2014;57(11):2261–9.
pubmed: 25208757 doi: 10.1007/s00125-014-3361-2
Neves JS, Newman C, Bostrom JA, Buysschaert M, Newman JD, Medina JL, Goldberg IJ, Bergman M. Management of dyslipidemia and atherosclerotic cardiovascular risk in prediabetes. Diabetes Res Clin Pract. 2022;190:109980.
pubmed: 35787415 doi: 10.1016/j.diabres.2022.109980
DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237(3):E214-223.
pubmed: 382871
Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487–95.
pubmed: 15161807 doi: 10.2337/diacare.27.6.1487
Verges B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia. 2015;58(5):886–99.
pubmed: 25725623 pmcid: 4392164 doi: 10.1007/s00125-015-3525-8
Kim J, Shin SJ, Kim YS, Kang HT. Positive association between the ratio of triglycerides to high-density lipoprotein cholesterol and diabetes incidence in Korean adults. Cardiovasc Diabetol. 2021;20(1):183.
pubmed: 34503545 pmcid: 8431895 doi: 10.1186/s12933-021-01377-5
Zhang L, Chen S, Deng A, Liu X, Liang Y, Shao X, Sun M, Zou H. Association between lipid ratios and insulin resistance in a Chinese population. PLoS ONE. 2015;10(1):e0116110.
pubmed: 25635876 pmcid: 4312024 doi: 10.1371/journal.pone.0116110
Zhao JV, Liu F, Schooling CM, Li J, Gu D, Lu X. Using genetics to assess the association of commonly used antihypertensive drugs with diabetes, glycaemic traits and lipids: a trans-ancestry Mendelian randomisation study. Diabetologia. 2022;65(4):695–704.
pubmed: 35080656 doi: 10.1007/s00125-021-05645-7
Sheng G, Kuang M, Yang R, Zhong Y, Zhang S, Zou Y. Evaluation of the value of conventional and unconventional lipid parameters for predicting the risk of diabetes in a non-diabetic population. J Transl Med. 2022;20(1):266.
pubmed: 35690771 pmcid: 9188037 doi: 10.1186/s12967-022-03470-z
Chen Y, Zhang XP, Yuan J, Cai B, Wang XL, Wu XL, Zhang YH, Zhang XY, Yin T, Zhu XH, et al. Association of body mass index and age with incident diabetes in Chinese adults: a population-based cohort study. BMJ Open. 2018;8(9):e021768.
pubmed: 30269064 pmcid: 6169758 doi: 10.1136/bmjopen-2018-021768
Bello-Chavolla OY, Almeda-Valdes P, Gomez-Velasco D, Viveros-Ruiz T, Cruz-Bautista I, Romo-Romo A, Sanchez-Lazaro D, Meza-Oviedo D, Vargas-Vazquez A, Campos OA, et al. METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes. Eur J Endocrinol. 2018;178(5):533–44.
pubmed: 29535168 doi: 10.1530/EJE-17-0883
Zhou X, Qiao Q, Ji L, Ning F, Yang W, Weng J, Shan Z, Tian H, Ji Q, Lin L, et al. Nonlaboratory-based risk assessment algorithm for undiagnosed type 2 diabetes developed on a nation-wide diabetes survey. Diabetes Care. 2013;36(12):3944–52.
pubmed: 24144651 pmcid: 3836161 doi: 10.2337/dc13-0593
Si Y, Liu J, Han C, Wang R, Liu T, Sun L. The correlation of retinol-binding protein-4 and lipoprotein combine index with the prevalence and diagnosis of acute coronary syndrome. Heart Vessels. 2020;35(11):1494–501.
pubmed: 32449048 doi: 10.1007/s00380-020-01627-8
Zheng X, Zhang X, Han Y, Hu H, Cao C. Nonlinear relationship between atherogenic index of plasma and the risk of prediabetes: a retrospective study based on Chinese adults. Cardiovasc Diabetol. 2023;22(1):205.
pubmed: 37563588 pmcid: 10416492 doi: 10.1186/s12933-023-01934-0
Brandts J, Tittel SR, Bramlage P, Danne T, Brix JM, Zimny S, Heyer CHJ, Holl RW, Muller-Wieland D. Low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol in type 1 diabetes and type 2 diabetes: lipid goal attainment in a large German-Austrian diabetes registry. Diabetes Obes Metab. 2023. https://doi.org/10.1016/j.atherosclerosis.2023.06.842 .
doi: 10.1016/j.atherosclerosis.2023.06.842 pubmed: 37694759
Sangouni AA, Alizadeh M, Jamalzehi A, Hosseinzadeh M, Parastouei K. Garlic supplementation improves intestinal transit time, lipid accumulation product and cardiometabolic indices in subjects with metabolic syndrome: a randomized controlled trial. Phytother Res. 2023;37(6):2305–14.
pubmed: 36721177 doi: 10.1002/ptr.7741
Gao Y, Hu Y, Xiang L. Remnant cholesterol, but not other cholesterol parameters, is associated with gestational diabetes mellitus in pregnant women: a prospective cohort study. J Transl Med. 2023;21(1):531.
pubmed: 37544989 pmcid: 10405385 doi: 10.1186/s12967-023-04322-0
Diabetes A American. 2 Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S13–27.
doi: 10.2337/dc18-S002
Drew BG, Rye KA, Duffy SJ, Barter P, Kingwell BA. The emerging role of HDL in glucose metabolism. Nat Rev Endocrinol. 2012;8(4):237–45.
pubmed: 22271188 doi: 10.1038/nrendo.2011.235
Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol. 2008;9(2):125–38.
pubmed: 18216769 doi: 10.1038/nrm2336
Alexopoulos AS, Qamar A, Hutchins K, Crowley MJ, Batch BC, Guyton JR. Triglycerides: emerging targets in diabetes care? review of moderate hypertriglyceridemia in diabetes. Curr Diab Rep. 2019;19(4):13.
pubmed: 30806837 pmcid: 6664805 doi: 10.1007/s11892-019-1136-3
Bitzur R, Cohen H, Kamari Y, Shaish A, Harats D. Triglycerides and HDL cholesterol: stars or second leads in diabetes? Diabetes Care. 2009. https://doi.org/10.2337/dc09-S343 .
doi: 10.2337/dc09-S343 pubmed: 19875585 pmcid: 2811473
Yin B, Wu Z, Xia Y, Xiao S, Chen L, Li Y. Non-linear association of atherogenic index of plasma with insulin resistance and type 2 diabetes: a cross-sectional study. Cardiovasc Diabetol. 2023;22(1):157.
pubmed: 37386500 pmcid: 10311747 doi: 10.1186/s12933-023-01886-5
Manell H, Kristinsson H, Kullberg J, Ubhayasekera SJK, Morwald K, Staaf J, Cadamuro J, Zsoldos F, Gopel S, Sargsyan E, et al. Hyperglucagonemia in youth is associated with high plasma free fatty acids, visceral adiposity, and impaired glucose tolerance. Pediatr Diabetes. 2019;20(7):880–91.
pubmed: 31271247 doi: 10.1111/pedi.12890
Ginsberg HN. Insulin resistance and cardiovascular disease. J Clin Invest. 2000;106(4):453–8.
pubmed: 10953019 pmcid: 380256 doi: 10.1172/JCI10762
Sun Y, Ren M, Gao GQ, Gong B, Xin W, Guo H, Zhang XJ, Gao L, Zhao JJ. Chronic palmitate exposure inhibits AMPKalpha and decreases glucose-stimulated insulin secretion from beta-cells: modulation by fenofibrate. Acta Pharmacol Sin. 2008;29(4):443–50.
pubmed: 18358090 doi: 10.1111/j.1745-7254.2008.00717.x
Sun Y, Zhang L, Gu HF, Han W, Ren M, Wang F, Gong B, Wang L, Guo H, Xin W, et al. Peroxisome proliferator-activated receptor-alpha regulates the expression of pancreatic/duodenal homeobox-1 in rat insulinoma (INS-1) cells and ameliorates glucose-induced insulin secretion impaired by palmitate. Endocrinology. 2008;149(2):662–71.
pubmed: 17991720 doi: 10.1210/en.2007-1275
Wan Q, Wang F, Wang F, Guan Q, Liu Y, Wang C, Feng L, Gao G, Gao L, Zhao J. Regression to normoglycaemia by fenofibrate in pre-diabetic subjects complicated with hypertriglyceridaemia: a prospective randomized controlled trial. Diabet Med. 2010;27(11):1312–7.
pubmed: 20968112 doi: 10.1111/j.1464-5491.2010.03107.x
Besseling J, Kastelein JJ, Defesche JC, Hutten BA, Hovingh GK. Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA. 2015;313(10):1029–36.
pubmed: 25756439 doi: 10.1001/jama.2015.1206
Perez-Calahorra S, Civeira F, Guallar-Castillon P, Pinto X, Banegas JR, Pedro-Botet J, Suarez-Tembra M, Mauri M, Soler C, Rodriguez-Artalejo F, et al. Behavioural cardiovascular risk factors and prevalence of diabetes in subjects with familial hypercholesterolaemia. Eur J Prev Cardiol. 2020;27(15):1649–60.
pubmed: 31914797 doi: 10.1177/2047487319896138
Gonzalez-Lleo AM, Sanchez-Hernandez RM, Boronat M, Wagner AM. Diabetes and familial hypercholesterolemia: interplay between lipid and glucose metabolism. Nutrients 2022;14(7).
Takeshita Y, Takamura T, Honda M, Kita Y, Zen Y, Kato K, Misu H, Ota T, Nakamura M, Yamada K, et al. The effects of ezetimibe on non-alcoholic fatty liver disease and glucose metabolism: a randomised controlled trial. Diabetologia. 2014;57(5):878–90.
pubmed: 24407920 doi: 10.1007/s00125-013-3149-9
Newman CB, Preiss D, Tobert JA, Jacobson TA, Page RL 2nd, Goldstein LB, Chin C, Tannock LR, Miller M, Raghuveer G, et al. Statin safety and associated adverse events: a scientific statement from the american heart association. Arterioscler Thromb Vasc Biol. 2019;39(2):e38–81.
pubmed: 30580575 doi: 10.1161/ATV.0000000000000073
Swerdlow DI, Preiss D, Kuchenbaecker KB, Holmes MV, Engmann JE, Shah T, Sofat R, Stender S, Johnson PC, Scott RA, et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet. 2015;385(9965):351–61.
pubmed: 25262344 pmcid: 4322187 doi: 10.1016/S0140-6736(14)61183-1
Lotta LA, Sharp SJ, Burgess S, Perry JRB, Stewart ID, Willems SM, Luan J, Ardanaz E, Arriola L, Balkau B, et al. Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA. 2016;316(13):1383–91.
pubmed: 27701660 pmcid: 5386134 doi: 10.1001/jama.2016.14568
Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, Owen N. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care. 2008;31(4):661–6.
pubmed: 18252901 doi: 10.2337/dc07-2046
Gong Q, Zhang P, Wang J, Ma J, An Y, Chen Y, Zhang B, Feng X, Li H, Chen X, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 2019;7(6):452–61.
pubmed: 31036503 pmcid: 8172050 doi: 10.1016/S2213-8587(19)30093-2
Ko SH, Jung Y. Energy metabolism changes and dysregulated lipid metabolism in postmenopausal women. Nutrients. 2021. https://doi.org/10.3390/nu13124556 .
doi: 10.3390/nu13124556 pubmed: 34960109 pmcid: 8704126
Ko SH, Kim HS. Menopause-associated lipid metabolic disorders and foods beneficial for postmenopausal women. Nutrients. 2020. https://doi.org/10.3390/nu12010202 .
doi: 10.3390/nu12010202 pubmed: 33353102 pmcid: 7767216
Sowers M, Zheng H, Tomey K, Karvonen-Gutierrez C, Jannausch M, Li X, Yosef M, Symons J. Changes in body composition in women over six years at midlife: ovarian and chronological aging. J Clin Endocrinol Metab. 2007;92(3):895–901.
pubmed: 17192296 doi: 10.1210/jc.2006-1393
Yazici D, Sezer H. Insulin resistance, obesity and lipotoxicity. Adv Exp Med Biol. 2017;960:277–304.
pubmed: 28585204 doi: 10.1007/978-3-319-48382-5_12
Shi Y, Wen M. Sex-specific differences in the effect of the atherogenic index of plasma on prediabetes and diabetes in the NHANES 2011–2018 population. Cardiovasc Diabetol. 2023;22(1):19.
pubmed: 36717829 pmcid: 9887826 doi: 10.1186/s12933-023-01740-8

Auteurs

Mingkang Li (M)

Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China.

Wenkang Zhang (W)

Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China.

Minhao Zhang (M)

Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China.

Linqing Li (L)

Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China.

Dong Wang (D)

Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China.

Gaoliang Yan (G)

Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China.

Yong Qiao (Y)

Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China. jingyong8866@163.com.

Chengchun Tang (C)

Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China. tangchengchun@hotmail.com.

Classifications MeSH