Wearable sensor supports in-situ and continuous monitoring of plant health in precision agriculture era.

in-situ and continuous monitoring plant health information precision agriculture wearable sensors

Journal

Plant biotechnology journal
ISSN: 1467-7652
Titre abrégé: Plant Biotechnol J
Pays: England
ID NLM: 101201889

Informations de publication

Date de publication:
06 Jan 2024
Historique:
revised: 09 12 2023
received: 09 09 2023
accepted: 21 12 2023
medline: 7 1 2024
pubmed: 7 1 2024
entrez: 7 1 2024
Statut: aheadofprint

Résumé

Plant health is intricately linked to crop quality, food security and agricultural productivity. Obtaining accurate plant health information is of paramount importance in the realm of precision agriculture. Wearable sensors offer an exceptional avenue for investigating plant health status and fundamental plant science, as they enable real-time and continuous in-situ monitoring of physiological biomarkers. However, a comprehensive overview that integrates and critically assesses wearable plant sensors across various facets, including their fundamental elements, classification, design, sensing mechanism, fabrication, characterization and application, remains elusive. In this study, we provide a meticulous description and systematic synthesis of recent research progress in wearable sensor properties, technology and their application in monitoring plant health information. This work endeavours to serve as a guiding resource for the utilization of wearable plant sensors, empowering the advancement of plant health within the precision agriculture paradigm.

Identifiants

pubmed: 38184781
doi: 10.1111/pbi.14283
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Natural Science Foundation of China
ID : 32125033
Organisme : National Natural Science Foundation of China
ID : 32260687
Organisme : the Central Government Guides Local Science and Technology Development Fund Projects
ID : Qiankehezhongyindi(2023)001
Organisme : Program of Introducing Talents of Discipline to Universities of China
ID : 111Program,D20023

Informations de copyright

© 2024 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

Références

Ahmed, T., Noman, M., Gardea-Torresdey, J.L., White, J.C. and Li, B. (2023) Dynamic interplay between nano-enabled agrochemicals and the plant-associated microbiome. Trends Plant Sci. 28, 1310-1325.
Ali, M.M., Hashim, N., Abd Aziz, S. and Lasekan, O. (2020) Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends Food Sci. Tech. 99, 1-10.
Alkio, M., Tabuchi, T.M., Wang, X.C. and Colón-Carmona, A. (2005) Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J. Exp. Bot. 56, 2983-2994.
Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S. and Park, I. (2014) Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano. 8, 5154-5163.
An, J.P., Liu, Z.Y., Zhang, X.W., Wang, D.R., Zeng, F.C., You, C.X. and Han, Y.P. (2023) Brassinosteroid signaling regulator BIM1 integrates brassinolide and jasmonic acid signaling during cold tolerance in apple. Plant Physiol. 193, 1652-1674.
Askim, J.R., Mahmoudi, M. and Suslick, K.S. (2013) Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem. Soc. Rev. 42, 8649-8682.
Bae, G.Y., Han, J.T., Lee, G., Lee, S., Kim, S.W., Park, S., Kwon, J. et al. (2018) Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv. Mater. 30, 1803388.
Barbosa, J.A., Freitas, V.M.S., Vidotto, L.H.B., Schleder, G.R., de Oliveira, R.A.G., da Rocha, J.F., Kubota, L.T. et al. (2022) Biocompatible wearable electrodes on leaves toward the on-site monitoring of water loss from plants. ACS Appl. Mater. Inter. 14, 22989-23001.
Boonyaves, K., Ang, M.C.Y., Park, M., Cui, J.Q., Khong, D.T., Singh, G.P., Koman, V.B. et al. (2023) Near-infrared fluorescent carbon nanotube sensors for the plant hormone family gibberellins. Nano Lett. 23, 916-924.
Borini, S., White, R., Wei, D., Astley, M., Haque, S., Spigone, E., Harris, N. et al. (2013) Ultrafast graphene oxide humidity sensors. ACS Nano. 7, 11166-11173.
Buchner, O., Roach, T., Gertzen, J., Schenk, S., Karadar, M., Stöggl, W., Miller, R. et al. (2017) Drought affects the heat-hardening capacity of alpine plants as indicated by changes in xanthophyll cycle pigments, singlet oxygen scavenging, α-tocopherol and plant hormones. Environ. Exp. Bot. 133, 159-175.
Bukhamsin, A., Lahcen, A.A., De Oliveira, J., Shetty, S., Blilou, I., Kosel, J. and Salama, K.N. (2022) Minimally-invasive, real-time, non-destructive, species-independent phytohormone biosensor for precision farming. Biosens. Bioelectron. 214, 114515.
Cao, Q., Kim, H.S., Pimparkar, N., Kulkarni, J.P., Wang, C.J., Shim, M., Roy, K. et al. (2008) Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495-500.
Cao, M.J., Zhang, Y.L., Liu, X., Huang, H., Zhou, X.E., Wang, W.L., Zeng, A. et al. (2017) Combining chemical and genetic approaches to increase drought resistance in plants. Nat. Commun. 8, 1183.
Chai, Y.F., Chen, C.Y., Luo, X., Zhan, S.J., Kim, J., Luo, J.K., Wang, X.Z. et al. (2021) Cohabiting plant-wearable sensor in situ monitors water transport in plant. Adv. Sci. 8, 2003642.
Chatterjee, S. and Chen, A. (2012) Voltammetric detection of the α-dicarbonyl compound: Methylglyoxal as a flavoring agent in wine and beer. Anal. Chim. Acta 751, 66-70.
Chen, Z.T., Zhao, D.N., Ma, R., Zhang, X.J., Rao, J.H., Yin, Y.J., Wang, X.F. et al. (2021) Flexible temperature sensors based on carbon nanomaterials. J. Mater. Chem. B 9, 1941-1964.
Cheng, Y., Wang, R.R., Sun, J. and Gao, L. (2015) A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 27, 7365.
Cortleven, A., Leuendorf, J.E., Frank, M., Pezzetta, D., Bolt, S. and Schmülling, T. (2019) Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 42, 998-1018.
Deng, X., Wang, S., Zhou, W., Xu, M., Chen, B. and Zhang, W. (2023) Wrinkle-bioinspired silver nanowire surface enhanced Raman scattering sensors for pesticide molecule detection. Anal. Bioanal. Chem. 415, 3255-3264.
Dhull, V., Gahlaut, A. and Hooda, V. (2023) Nanomaterials based biosensors for the detection of organophosphate compounds: a review. Int. J. Environ. An. Ch. 103, 4200-4224.
Di Tocco, J., Lo Presti, D., Massaroni, C., Cinti, S., Cimini, S., De Gara, L. and Schena, E. (2023) Plant-wear: a multi-sensor plant wearable platform for growth and microclimate monitoring. Sensors 23, 549.
Dong, H.W., Zhao, Q.X., Li, J.S., Xiang, Y.D., Liu, H.M., Guo, Y.M., Yang, Q.Q. et al. (2021) Broad-spectrum electrochemical immunosensor based on one-step electrodeposition of AuNP-Abs and Prussian blue nanocomposite for organophosphorus pesticide detection. Bioproc. Biosyst. Eng. 44, 585-594.
Dorokhov, Y.L., Sheshukova, E.V. and Komarova, T.V. (2018) Methanol in plant life. Front. Plant Sci. 9, 1623.
El Hajj, M.M., Johansen, K., Almashharawi, S.K. and McCabe, M.F. (2023) Water uptake rates over olive orchards using Sentinel-1 synthetic aperture radar data. Agric. Water Manag. 288, 108462.
Fahad, S., Hussain, S., Matloob, A., Khan, F.A., Khaliq, A., Saud, S., Hassan, S. et al. (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul. 75, 391-404.
Fan, X., Zhao, L., Ling, Q.J., Liu, J.C. and Gu, H.B. (2022) Mussel-induced nano-silver antibacterial, self-healing, self-adhesive, anti-freezing, and moisturizing dual-network organohydrogel based on SA-PBA/PVA/CNTs as flexible wearable strain sensors. Polymer 256, 125270.
Fang, L., Jia, M.X., Zhao, H.P., Kang, L.Z., Shi, L.C., Zhou, L.D. and Kong, W.J. (2021) Molecularly imprinted polymer-based optical sensors for pesticides in foods: recent advances and future trends. Trends Food Sci. Tech. 116, 387-404.
Farshchi, F., Saadati, A., Kholafazad-Kordasht, H., Seidi, F. and Hasanzadeh, M. (2021) Trifluralin recognition using touch-based fingertip: application of wearable glove-based sensor toward environmental pollution and human health control. J. Mol. Recognit. 34, e2927.
Fingolo, A.C., de Morais, V.B., Costa, S.V., Correa, C.C., Lodi, B., Santhiago, M., Bernardes, J.S. et al. (2021) Enhanced hydrophobicity in nanocellulose-based materials: toward green wearable devices. ACS Appl. Bio Mater. 4, 6682-6689.
Fleury, R., Sounas, D. and Alu, A. (2015) An invisible acoustic sensor based on parity-time symmetry. Nat. Commun. 6, 5905.
Fortino, G., Di Fatta, G., Pathan, M. and Vasilakos, A.V. (2014) Cloud-assisted body area networks: state-of-the-art and future challenges. Wirel. Netw. 20, 1925-1938.
Frazier, K.M. and Swager, T.M. (2013) Robust cyclohexanone selective chemiresistors based on single-walled carbon nanotubes. Anal. Chem. 85, 7154-7158.
Gao, Y., Xu, M.D., Yu, G.H., Tan, J.P. and Xuan, F.Z. (2019) Extrusion printing of carbon nanotube-coated elastomer fiber with microstructures for flexible pressure sensors. Sensor. Actuat. A-Phys. 299, 111625.
Gebbers, R. and Adamchuk, V.I. (2010) Precision agriculture and food security. Science 327, 828-831.
Giraldo, J.P., Wu, H.H., Newkirk, G.M. and Kruss, S. (2019) Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541-553.
Gomes, N.O. and Raymundo-Pereira, P.A. (2023) On-site therapeutic drug monitoring of paracetamol analgesic in non-invasively collected saliva for personalized medicine. Small 19, 2206753.
Gomes, N.O., Paschoalin, R.T., Bilatto, S., Sorigotti, A.R., Farinas, C.S., Mattoso, L.H.C., Machado, S.A.S. et al. (2023a) Flexible, bifunctional sensing platform made with biodegradable mats for detecting glucose in urine. ACS Sustain. Chem. Eng. 11, 2209-2218.
Gomes, N.O., Teixeira, S.C., Calegaro, M.L., Machado, S.A.S., Soares, N.D., de Oliveira, T.V. and Raymundo-Pereira, P.A. (2023b) Flexible and sustainable printed sensor strips for on-site, fast decentralized self-testing of urinary biomarkers integrated with a portable wireless analyzer. Chem. Eng. J. 472, 144775.
Gupta, A., Hisano, H., Hojo, Y., Matsuura, T., Ikeda, Y., Mori, I.C. and Senthil-Kumar, M. (2017) Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Sci. Rep. 7, 4017.
Hewage, K.A.H., Yang, J.F., Wang, D., Hao, G.F., Yang, G.F. and Zhu, J.K. (2020) Chemical manipulation of abscisic acid signaling: a new approach to abiotic and biotic stress management in agriculture. Adv. Sci. (Weinh) 7, 2001265.
Holopainen, J.K. and Gershenzon, J. (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 15, 176-184.
Hossain, N.I. and Tabassum, S. (2023) A hybrid multifunctional physicochemical sensor suite for continuous monitoring of crop health. Sci. Rep. 13, 9848.
Hossain, N.I., Noushin, T. and Tabassum, S. (2021) Leaf-FIT: a wearable leaf sensor for in-situ and real-time monitoring of plant phytohormones. 2021 IEEE Sensors, 4, 4.
Hsu, H.H., Zhang, X.Y., Xu, K.G., Wang, Y., Wang, Q., Luo, G.X., Xing, M. et al. (2021) Self-powered and plant-wearable hydrogel as LED power supply and sensor for promoting and monitoring plant growth in smart farming. Chem. Eng. J. 422, 129499.
Huang, L.X., Wang, H., Wu, P.X., Huang, W.M., Gao, W., Fang, F.Y., Cai, N. et al. (2020) Wearable flexible strain sensor based on three-dimensional wavy laser-induced graphene and silicone rubber. Sensors 20, 4266.
Huang, Z.C., Omwange, K.A., Tsay, L.W.J., Saito, Y., Maai, E., Yamazaki, A., Nakano, R. et al. (2022) UV excited fluorescence image-based non-destructive method for early detection of strawberry (Fragaria × ananassa) spoilage. Food Chem. 368, 130776.
Hwang, Y., Kim, M.K., Zhao, Z., Kim, B., Chang, T., Fan, T.F., Ibrahim, M.S. et al. (2022) Plant-based substrate materials for flexible green electronics. Adv. Mater. Technol. 7, 2200446.
Ibrahim, H., Moru, S., Schnable, P. and Dong, L. (2022) Wearable plant sensor for in situ monitoring of volatile organic compound emissions from crops. ACS Sensors 7, 2293-2302.
Jansen, R.M.C., Hofstee, J.W., Wildt, J., Verstappen, F.W.A., Bouwmeester, H.J. and van Henten, E.J. (2009) Induced plant volatiles allow sensitive monitoring of plant health status in greenhouses. Plant Signal. Behav. 4, 824-829.
Jeong, W., Song, J., Bae, J., Nandanapalli, K.R. and Lee, S. (2019) Breathable nanomesh humidity sensor for real-time skin humidity monitoring. ACS Appl. Mater. Inter. 11, 44758-44763.
Jiang, J.J., Zhang, S., Wang, B., Ding, H. and Wu, Z.G. (2020) Hydroprinted liquid-alloy-based morphing electronics for fast-growing/tender plants: from physiology monitoring to habit manipulation. Small 16, 102003833.
Ju, Y., Ha, J., Song, Y. and Lee, D. (2021) Revealing the enhanced structural recovery and gelation mechanisms of cation-induced cellulose nanofibrils composite hydrogels*. Carbohyd. Polym. 272, 118515.
Jung, M., Lee, E., Kim, D., Kim, K., Yun, C., Lee, H., Kim, H. et al. (2019) Amorphous FeZr metal for multi-functional sensor in electronic skin. NPJ Flex. Electron. 3, 8.
Kamran, U., Heo, Y.J., Lee, J.W. and Park, S.J. (2019) Functionalized carbon materials for electronic devices: a review. Micromachines 10, 234.
Kang, K., Park, J., Kim, K. and Yu, K.J. (2021) Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res. 14, 3096-3111.
Karimzadeh, Z., Mahmoudpour, M., Rahimpour, E. and Jouyban, A. (2022) Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: advances toward designing the ideal flexible/wearable nanoprobes. Adv. Colloid. Interfac. 305, 102705.
Kashyap, B. and Kumar, R. (2021) Sensing methodologies in agriculture for soil moisture and nutrient monitoring. IEEE Access 9, 14095-14121.
Kazan, K. (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 20, 219-229.
Keefe, R.F., Zimbelman, E.G. and Picchi, G. (2022) Use of individual tree and product level data to improve operational forestry. Curr. For. Rep. 8, 148-165.
Khodadadi, M., Moshiri, S.M.M., Nozhat, N. and Khalily, M. (2023) Controllable hybrid plasmonic integrated circuit. Sci. Rep. 13, 9983.
Kim, M., Kang, P., Leem, J. and Nam, S. (2017) A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity. Nanoscale 9, 4058-4065.
Kim, D., Ahn, S.K. and Yoon, J. (2019a) Highly stretchable strain sensors comprising double network hydrogels fabricated by microfluidic devices. Adv. Mater. Technol. 4, 1800739.
Kim, J., Campbell, A.S., de Avila, B.E.F. and Wang, J. (2019b) Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389-406.
Kim, J.J., Fan, R.L., Allison, L.K. and Andrew, T.L. (2020) On-site identification of ozone damage in fruiting plants using vapor-deposited conducting polymer tattoos. Sci. Adv. 6, eabc3296.
Kohli, A., Sreenivasulu, N., Lakshmanan, P. and Kumar, P.P. (2013) The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep. 32, 945-957.
Kuzubasoglu, B.A. and Bahadir, S.K. (2020) Flexible temperature sensors: a review. Sensor. Actuat. A-Phys. 315, 112282.
Lan, L.Y., Yin, T.H., Jiang, C.M., Li, X.J., Yao, Y., Wang, Z., Qu, S.X. et al. (2019) Highly conductive 1D-2D composite film for skin-mountable strain sensor and stretchable triboelectric nanogenerator. Nano Energy 62, 319-328.
Lan, L.Y., Le, X.H., Dong, H.Y., Xie, J., Ying, Y.B. and Ping, J.F. (2020) One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens. Bioelectron. 165, 112360.
Lawaniya, S.D., Kumar, S., Yu, Y.T., Rubahn, H.G., Mishra, Y.K. and Awasthi, K. (2023) Functional nanomaterials in flexible gas sensors: recent progress and future prospects. Mater. Today Chem. 29, 101428.
Lee, K., Park, J., Lee, M.S., Kim, J., Hyun, B.G., Kang, D.J., Na, K. et al. (2014) In-situ synthesis of carbon nanotube-graphite electronic devices and their integrations onto surfaces of live plants and insects. Nano Lett. 14, 2647-2654.
Lee, H.J., Joyce, R. and Lee, J. (2022) Liquid polymer/metallic salt-based stretchable strain sensor to evaluate fruit growth. ACS Appl. Mater. Inter. 14, 5983-5994.
Lee, G., Hossain, O., Jamalzadegan, S., Liu, Y.X., Wang, H.Y., Saville, A.C., Shymanovich, T. et al. (2023) Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring. Sci. Adv. 9, eade2232.
Lew, T.T.S., Sarojam, R., Jang, I.C., Park, B.S., Naqvi, N.I., Wong, M.H., Singh, G.P. et al. (2020) Species-independent analytical tools for next-generation agriculture. Nat. Plants 6, 1408-1417.
Li, W.W., Teng, C.J., Sun, Y.L., Cai, L., Xu, J.L., Sun, M.X., Li, X. et al. (2018) Sprayed, scalable, wearable, and portable NO2 sensor array using fully flexible AgNPs-all-carbon nanostructures. ACS Appl. Mater. Inter. 10, 34485-34493.
Li, H.Y., Wang, C., Wang, X.D., Hou, P.C., Luo, B., Song, P., Pan, D.Y. et al. (2019a) Disposable stainless steel-based electrochemical microsensor for in vivo determination of indole-3-acetic acid in soybean seedlings. Biosens. Bioelectron. 126, 193-199.
Li, S.X., Xia, H., Xu, Y.S., Lv, C., Wang, G., Dai, Y.Z. and Sun, H.B. (2019b) Gold nanoparticle densely packed micro/nanowire-based pressure sensors for human motion monitoring and physiological signal detection. Nanoscale 11, 4925-4932.
Li, Z., Paul, R., Tis, T.B., Saville, A.C., Hansel, J.C., Yu, T., Ristaino, J.B. et al. (2019c) Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat. Plants 5, 856-866.
Li, Z., Liu, Y.X., Hossain, O., Paul, R., Yao, S.S., Wu, S., Ristaino, J.B. et al. (2021a) Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor. Matter 4, 2553.
Li, Z.L., Zhou, J.P., Dong, T., Xu, Y. and Shang, Y.K. (2021b) Application of electrochemical methods for the detection of abiotic stress biomarkers in plants. Biosens. Bioelectron. 182, 113105.
Li, D.H., Li, G.Q., Li, J.Z. and Xu, S.W. (2022) Wearable crop sensor based on nano-graphene oxide for noninvasive real-time monitoring of plant water. Membranes 12, 358.
Li, X., Chen, D., Carrión, V.J., Revillini, D., Yin, S., Dong, Y., Zhang, T. et al. (2023a) Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections. Nat. Commun. 14, 5090.
Li, X., Sun, R.J., Pan, J.Y., Shi, Z.H., Lv, J.J., An, Z.J., He, Y. et al. (2023b) All-MXene-printed RF resonators as wireless plant wearable sensors for in situ ethylene detection. Small 19, 2207889.
Liang, J.J., Li, L., Niu, X.F., Yu, Z.B. and Pei, Q.B. (2013) Elastomeric polymer light-emitting devices and displays. Nat. Photonics 7, 817-824.
Liao, X.Q., Liao, Q.L., Yan, X.Q., Liang, Q.J., Si, H.N., Li, M.H., Wu, H.L. et al. (2015) Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor. Adv. Funct. Mater. 25, 2395-2401.
Liao, X.N., Luo, X.Y., Li, Y.Y., Zhou, Y., Liang, Q., Feng, K.H., Camarada, M.B. et al. (2023) An antifouling electrochemical sensor based on multiwalled carbon nanotubes functionalized black phosphorus for highly sensitive detection of carbendazim and corresponding response mechanisms analyses. Microchem. J. 190, 108671.
Lin, W., Sun, L.H., Huang, R.Z., Liang, W.J., Liu, X.Y., He, H., Fukuda, H. et al. (2020) Active DNA demethylation regulates tracheary element differentiation in Arabidopsis. Sci. Adv. 6, eaaz2963.
Lin, T.R., Li, S.X., Hu, Y., Sheng, L., Chen, X.B., Que, X.Y., Peng, J. et al. (2022) Ultrastretchable and adhesive agarose/Ti3C2T chi-crosslinked-polyacrylamide double-network hydrogel for strain sensor. Carbohyd. Polym. 290, 119506.
Liu, M., Khan, A., Wang, Z.F., Liu, Y., Yang, G.J., Deng, Y. and He, N.Y. (2019a) Aptasensors for pesticide detection. Biosens. Bioelectron. 130, 174-184.
Liu, Y.Q., Zhang, J.R., Han, D.D., Zhang, Y.L. and Sun, H.B. (2019b) Versatile electronic skins with biomimetic micronanostructures fabricated using natural reed leaves as templates. ACS Appl. Mater. Inter. 11, 38084-38091.
Liu, L.P., Jiao, Z.B., Zhang, J.Q., Wang, Y.C., Zhang, C.C., Meng, X.C., Jiang, X.H. et al. (2021) Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications. ACS Appl. Mater. Inter. 13, 1967-1978.
Liu, K., Harrison, M.T., Yan, H.L., Liu, D.L., Meinke, H., Hoogenboom, G., Wang, B. et al. (2023) Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 14, 765.
Lo Presti, D., Cimini, S., Massaroni, C., D'Amato, R., Caponero, M.A., De Gara, L. and Schena, E. (2021) Plant wearable sensors based on FBG technology for growth and microclimate monitoring. Sensors 21, 6327.
Lombardi, N., Vitale, S., Turra, D., Reverberi, M., Fanelli, C., Vinale, F., Marra, R. et al. (2018) Root exudates of stressed plants stimulate and attract trichoderma soil fungi. Mol. Plant Microbe. In. 31, 982-994.
Lu, Y.Y., Xu, K.C., Zhang, L.S., Deguchi, M., Shishido, H., Arie, T., Pan, R.H. et al. (2020) Multimodal plant healthcare flexible sensor system. ACS Nano. 14, 10966-10975.
Lu, Y.Y., Yang, G., Shen, Y.J., Yang, H.Y. and Xu, K.C. (2022) Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 14, 150.
Ma, Y.J., Zhang, Y.C., Cai, S.S., Han, Z.Y., Liu, X., Wang, F.L., Cao, Y. et al. (2020) Flexible hybrid electronics for digital healthcare. Adv. Mater. 32, 1902062.
Mahmoudpour, M., Saadati, A., Hasanzadeh, M. and Kholafazad-kordasht, H. (2021) A stretchable glove sensor toward rapid monitoring of trifluralin: a new platform for the on-site recognition of herbicides based on wearable flexible sensor technology using lab-on-glove. J. Mol. Recognit. 34, e2923.
Melios, C., Panchal, V., Edmonds, K., Lartsev, A., Yakimova, R. and Kazakova, O. (2018) Detection of ultralow concentration NO2 in complex environment using epitaxial graphene sensors. ACS Sensors 3, 1666.
Moin, A., Zhou, A., Rahimi, A., Menon, A., Benatti, S., Alexandrov, G., Tamakloe, S. et al. (2021) A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4, 54-63.
Molina-Lopez, F., Quintero, A.V., Mattana, G., Briand, D. and de Rooij, N.F. (2013) Large-area compatible fabrication and encapsulation of inkjet-printed humidity sensors on flexible foils with integrated thermal compensation. J. Micromech. Microeng. 23, 025012.
Morcillo, R.J.L. and Manzanera, M. (2021) The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites 11, 337.
Mu, S.P., Xie, H.Y., Wang, W. and Yu, D. (2015) Electroless silver plating on PET fabric initiated by in situ reduction of polyaniline. Appl. Surf. Sci. 353, 608-614.
Must, I., Sinibaldi, E. and Mazzolai, B. (2019) A variable-stiffness tendril-like soft robot based on reversible osmotic actuation. Nat. Commun. 10, 344.
Nassar, J.M., Khan, S.M., Villalva, D.R., Nour, M.M., Almuslem, A.S. and Hussain, M.M. (2018) Compliant plant wearables for localized microclimate and plant growth monitoring. NPJ Flex. Electron. 2, 24.
Nawaz, R., Khan, M.A., Hafiz, I.A., Khan, M.F. and Khalid, A. (2021) Climate variables effect on fruiting pattern of Kinnow mandarin (Citrus nobilis Lour × C. deliciosa Tenora) grown at different agro-climatic regions. Sci. Rep. 11, 18177.
Nguyen, P.Q., Soenksen, L.R., Donghia, N.M., Angenent-Mari, N.M., de Puig, H., Huang, A., Lee, R. et al. (2021a) Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 39, 1366.
Nguyen, T., Chu, M., Tu, R. and Khine, M. (2021b) The effect of encapsulation on crack-based wrinkled thin film soft strain sensors. Materials 14, 364.
Ning, Y.S., Liu, W.D. and Wang, G.L. (2017) Balancing immunity and yield in crop plants. Trends Plant Sci. 22, 1069-1079.
Oren, S., Ceylon, H., Schnable, P.S. and Dong, L. (2017) High-resolution patterning and transferring of graphene-based nanomaterials onto tape toward roll-to-roll production of tape-based wearable sensors. Adv. Mater. Technol. 2, 1700223.
Park, J., Kim, J., Kim, K., Kim, S.Y., Cheong, W.H., Park, K., Song, J.H. et al. (2016) Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene. Nanoscale 8, 10591-10597.
Paschoalin, R.T., Gomes, N.O., Almeida, G.F., Bilatto, S., Farinas, C.S., Machado, S.A.S., Mattoso, L.H.C. et al. (2022) Wearable sensors made with solution-blow spinning poly(lactic acid) for non-enzymatic pesticide detection in agriculture and food safety. Biosens. Bioelectron. 199, 113875.
Pathak, A.K. and Viphavakit, C. (2022) A review on all-optical fiber-based VOC sensors: Heading towards the development of promising technology. Sensor. Actuat. A-Phys. 338, 113455.
Peng, B., Wu, X.Y., Zhang, C., Zhang, C., Lan, L.Y., Zhang, C.F., Ying, Y.B. et al. (2021) A flexible and fully integrated wearable pressure sensing chip system for multi-scenario applications. J. Mater. Chem. A 9, 26875-26884.
Per, T.S., Khan, M.I.R., Anjum, N.A., Masood, A., Hussain, S.J. and Khan, N.A. (2018) Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters. Environ. Exp. Bot. 145, 104-120.
Pleijel, H., Broberg, M.C., Uddling, J. and Mills, G. (2018) Current surface ozone concentrations significantly decrease wheat growth, yield and quality. Sci. Total Environ. 613, 687-692.
Presti, D.L., Di Tocco, J., Cimini, S., Cinti, S., Massaroni, C., D'Amato, R., Caponero, M.A. et al. (2023) Plant growth monitoring: design, fabrication, and feasibility assessment of wearable sensors based on fiber bragg gratings. Sensors 23, 361.
Qi, C., Dong, Z., Huang, Y., Xu, J. and Lei, C. (2022) Tough, anti-swelling supramolecular hydrogels mediated by surfactant-polymer interactions for underwater sensors. ACS Appl. Mater. Inter. 14, 30385-30397.
Qiu, F., Liu, J., Zhang, H.T., Li, H.Y., Liu, J.H., Shi, X.S., Li, C.L. et al. (2020) Flexible monolayer molecular crystal-field effect transistors for ultrasensitive and selective detection of dimethoate. Adv. Electron. Mater. 6, 2000579.
Raman, S. and Arunagirinathan, R.S. (2022) Silver nanowires in stretchable resistive strain sensors. Nanomaterials 12, 1932.
Raymundo-Pereira, P.A., Gomes, N.O., Shimizu, F.M., Machado, S.A.S. and Oliveira, O.N. (2021) Selective and sensitive multiplexed detection of pesticides in food samples using wearable, flexible glove-embedded non-enzymatic sensors. Chem. Eng. J. 408, 127279.
Roh, E., Hwang, B.U., Kim, D., Kim, B.Y. and Lee, N.E. (2015) Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano. 9, 6252-6261.
Romeis, J., Naranjo, S.E., Meissle, M. and Shelton, A.M. (2019) Genetically engineered crops help support conservation biological control. Biol. Control 130, 136-154.
Ryuzaki, S., Tsutsui, M., He, Y.H., Yokota, K., Arima, A., Morikawa, T., Taniguchi, M. et al. (2017) Rapid structural analysis of nanomaterials in aqueous solutions. Nanotechnology 28, 155501.
Salvi, P., Manna, M., Kaur, H., Thakur, T., Gandass, N., Bhatt, D. and Muthamilarasan, M. (2021) Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Rep. 40, 1305-1329.
Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N. and Nelson, A. (2019) The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430.
Shahid, M., Ahmed, B. and Khan, M.S. (2018) Evaluation of microbiological management strategy of herbicide toxicity to greengram plants. Biocatal. Agr. Biotech. 14, 96-108.
Shao, Y.Z., Wei, L.S., Wu, X.Y., Jiang, C.M., Yao, Y., Peng, B., Chen, H. et al. (2022) Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 13, 3223.
Shu, S., Tang, Y.Y., Yuan, Y.H., Sun, J., Zhong, M. and Guo, S.R. (2016) The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiol. Bioch. 107, 344-353.
Singh, A.P., Fridman, Y., Holland, N., Ackerman-Lavert, M., Zananiri, R., Jaillais, Y., Henn, A. et al. (2018) Interdependent nutrient availability and steroid hormone signals facilitate root growth plasticity. Dev. Cell 46, 59.
Smith, A.A., Li, R. and Tse, Z.T.H. (2023) Reshaping healthcare with wearable biosensors. Sci. Rep. 13, 4998.
Son, S.Y., Lee, G., Wang, H.Y., Samson, S., Wei, Q.S., Zhu, Y. and You, W. (2022) Integrating charge mobility, stability and stretchability within conjugated polymer films for stretchable multifunctional sensors. Nat. Commun. 13, 2739.
Steinhorst, L. and Kudla, J. (2019) How plants perceive salt. Nature 572, 318-320.
Su, S., He, Y., Zhang, M.L., Yang, K., Song, S.P., Zhang, X.H., Fan, C.H. et al. (2008) High-sensitivity pesticide detection via silicon nanowires-supported acetylcholinesterase-based electrochemical sensors. Appl. Phys. Lett. 93, 023113.
Taboada, G., Abán, C.L., Cárdenas, G.M., Spedaletti, Y., González, M.A., Maita, E., Ortega-Baes, P. et al. (2022) Characterization of fungal pathogens and germplasm screening for disease resistance in the main production area of the common bean in Argentina. Front. Plant Sci. 13, 986247.
Tang, W.Z., Wu, J., Ying, Y.B. and Liu, Y. (2015) Writing sensors on solid agricultural products for in situ detection. Anal. Chem. 87, 10703-10707.
Tang, W.Z., Yan, T.T., Ping, J.F., Wu, J. and Ying, Y.B. (2017) Rapid fabrication of flexible and stretchable strain sensor by chitosan-based water ink for plants growth monitoring. Adv. Mater. Technol. 2, 1700021.
Tang, W.Z., Yan, T.T., Wang, F., Yang, J.X., Wu, J., Wang, J.L., Yue, T.L. et al. (2019) Rapid fabrication of wearable carbon nanotube/graphite strain sensor for real-time monitoring of plant growth. Carbon 147, 295-302.
Teixeira, S.C., Gomes, N.O., Oliveira, T.V.d., Fortes-Da-Silva, P., Soares, N.d.F.F. and Raymundo-Pereira, P.A. (2023) Review and Perspectives of sustainable, biodegradable, eco-friendly and flexible electronic devices and (Bio)sensors. Biosensors Bioelectron.: X 14, 100371.
Tholl, D., Hossain, O., Weinhold, A., Rose, U.S.R. and Wei, Q.S. (2021) Trends and applications in plant volatile sampling and analysis. Plant J. 106, 314-325.
Tsong, J.L. and Khor, S.M. (2023) Modern analytical and bioanalytical technologies and concepts for smart and precision farming. Anal. Methods 15, 3125-3148.
Valle, B., Simonneau, T., Boulord, R., Sourd, F., Frisson, T., Ryckewaert, M., Hamard, P. et al. (2017) PYM: a new, affordable, image-based method using a Raspberry Pi to phenotype plant leaf area in a wide diversity of environments. Plant Methods 13, 98.
Verma, V., Ravindran, P. and Kumar, P.P. (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 16, 86.
Wang, Q.F., Xie, S.G. and Hu, R. (2013) Bioaugmentation with Arthrobacter sp strain DAT1 for remediation of heavily atrazine-contaminated soil. Int. Biodeter. Biodegr. 77, 63-67.
Wang, T., Guo, Y.L., Wan, P.B., Zhang, H., Chen, X.D. and Sun, X.M. (2016) Flexible transparent electronic gas sensors. Small 12, 3748-3756.
Wang, R.F., Xu, W., Shen, W.F., Shi, X.Q., Huang, J. and Song, W.J. (2019) A highly stretchable and transparent silver nanowire/thermoplastic polyurethane film strain sensor for human motion monitoring. Inorg. Chem. Front. 6, 3119-3124.
Wang, Y., Jiang, W.K., Li, J., Ahommed, M.S., Wang, C., Ji, X.X., Liu, Y. et al. (2023) Zinc-ion engineered Plant-based multifunctional hydrogels for flexible wearable strain Sensors, Bio-electrodes and Zinc-ion hybrid capacitors. Chem. Eng. J. 465, 142917.
Xiao, Y., Jiang, S.W., Li, Y.R. and Zhang, W.L. (2021) Screen-printed flexible negative temperature coefficient temperature sensor based on polyvinyl chloride/carbon black composites. Smart Mater. Struct. 30, 025035.
Xie, Y., Zou, J.F., Li, G., Liu, H.T., Wang, Y., Lei, Y.F., Liu, K. et al. (2022) Wires with continuous sabal leaf-patterned micropores constructed by freeze printing for a wearable sensor responsible to multiple deformations. Small 18, 2201091.
Xu, W., Huang, Y., Zhou, R., Wang, Q., Yin, J., Kono, J., Ping, J. et al. (2020) Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface. ACS Appl. Mater. Inter. 12, 44281-44287.
Xu, S.H., Fan, Z., Yang, S.T., Zhao, Y.P. and Pan, L.J. (2021) Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers. Chem. Eng. J. 404, 126064.
Xu, N., Tang, Z., Jiang, Y.-P., Fang, J., Zhang, L., Lai, X., Sun, Q.-J. et al. (2023) Highly sensitive detection of thiram residues on fruit peel surfaces using a filter paper-based SERS sensor with AgNWs@ZIF-8. J. Environ. Chem. Eng. 11, 109736.
Yang, J., Duan, G.H., Li, C.Q., Liu, L., Han, G.Y., Zhang, Y.L. and Wang, C.M. (2019) The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front. Plant Sci. 10, 1349.
Yang, J.J., Zi, D.H., Zhu, X.Y., Li, H.K., Li, Z.H., Sun, L.F., Zhang, G.M. et al. (2022) Printed flexible transparent electrodes for harsh environments. Adv. Mater. Technol. 7, 2101087.
Yao, Y., Liu, X.X., Shao, Y.Z., Ying, Y.B. and Ping, J.F. (2020) Noble metal alloy nanoparticles coated flexible MoS2 paper for the determination of reactive oxygen species. Biosens. Bioelectron. 166, 7112463.
Yeasmin, R., Han, S.I., Duy, L., Ahn, B. and Seo, H. (2023) A skin-like self-healing and stretchable substrate for wearable electronics. Chem. Eng. J. 455, 140543.
Yi, Y.P.Q., Yu, C., Zhai, H., Jin, L., Cheng, D.X., Lu, Y.F., Chen, Z.D. et al. (2022) A free-standing humidity sensor with high sensing reliability for environmental and wearable detection. Nano Energy 103, 107780.
Yin, H.Y., Cao, Y.T., Marelli, B., Zeng, X.Q., Mason, A.J. and Cao, C.Y. (2021a) Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 33, 2007764.
Yin, S.H., Ibrahim, H., Schnable, P.S., Castellano, M.J. and Dong, L. (2021b) A field-deployable, wearable leaf sensor for continuous monitoring of vapor-pressure deficit. Adv. Mater. Technol. 6, 2001246.
Yoo, J., Jeong, S., Kim, S. and Je, J.H. (2015) A stretchable nanowire UV-Vis-NIR photodetector with high performance. Adv. Mater. 27, 1712.
Zeng, X.L., Yan, C.Z., Ren, L.L., Zhang, T., Zhou, F.R., Liang, X.W., Wang, N. et al. (2019) Silver telluride nanowire assembly for high-performance flexible thermoelectric film and its application in self-powered temperature sensor. Adv. Electron. Mater. 5, 1800612.
Zhang, J.L., Wang, C. and Zhou, C.W. (2012) Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics. ACS Nano. 6, 7412-7419.
Zhang, Y.H., Wang, S.D., Li, X.T., Fan, J.A., Xu, S., Song, Y.M., Choi, K.J. et al. (2014) Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv. Funct. Mater. 24, 2028-2037.
Zhang, Q., Jia, W.D., Ji, C., Pei, Z., Jing, Z., Cheng, Y.Q., Zhang, W.D. et al. (2019) Flexible wide-range capacitive pressure sensor using micropore PE tape as template. Smart Mater. Struct. 28, 115040.
Zhang, C., Zhang, C., Wu, X.Y., Ping, J.F. and Ying, Y.B. (2022a) An integrated and robust plant pulse monitoring system based on biomimetic wearable sensor. NPJ Flex. Electron. 6, 43.
Zhang, S.H., Zhu, J., Zhang, Y.Y., Chen, Z.S., Song, C.Y., Li, J.Q., Yi, N. et al. (2022b) Standalone stretchable RF systems based on asymmetric 3D microstrip antennas with on-body wireless communication and energy harvesting. Nano Energy 96, 107069.
Zhang, C., Kong, J.J., Wu, D.S., Guan, Z.Y., Ding, B.Q. and Chen, F.D. (2023a) Wearable sensor: an emerging data collection tool for plant phenotyping. Plant Phenom. 5, 0051.
Zhang, K., Li, W., Li, H., Luo, Y., Li, Z., Wang, X. and Chen, X. (2023b) A leaf-patchable reflectance meter for in situ continuous monitoring of chlorophyll content. Adv. Sci. 10, 2305552.
Zhao, Y.C., Gao, S.H., Zhu, J., Li, J.M., Xu, H., Xu, K.X., Cheng, H.Y. et al. (2019) Multifunctional stretchable sensors for continuous monitoring of long-term leaf physiology and microclimate. ACS Omega 4, 9522-9530.
Zhao, F.N., He, J.W., Li, X.J., Bai, Y.P., Ying, Y.B. and Ping, J.F. (2020) Smart plant-wearable biosensor for in-situ pesticide analysis. Biosens. Bioelectron. 170, 112636.
Zhao, H.N., Hao, S.W., Fu, Q.J., Zhang, X.R., Meng, L., Xu, F. and Yang, J. (2022) Ultrafast fabrication of lignin-encapsulated silica nanoparticles reinforced conductive hydrogels with high elasticity and self-adhesion for strain sensors. Chem. Mater. 34, 5258-5272.
Zhou, X.W., Guo, W., Yao, Y., Peng, R. and Peng, P. (2021) Flexible nonenzymatic glucose sensing with one-step laser-fabricated Cu2O/Cu porous structure. Adv. Eng. Mater. 23, 2100192.
Zhu, F., Xiao, H.B., Li, H.B., Huang, Y.G. and Ma, Y.J. (2019) Irregular hexagonal cellular substrate for stretchable electronics. J. Appl. Mech. 86, 034501.

Auteurs

Xiao-Hong Li (XH)

National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.

Meng-Zhao Li (MZ)

National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China.

Jing-Yi Li (JY)

National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China.

Yang-Yang Gao (YY)

National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.

Chun-Rong Liu (CR)

National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China.

Ge-Fei Hao (GF)

National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.
National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China.

Classifications MeSH