Novel toxin-based mRNA vaccine against Clostridium perfringens using in silico approaches.

C. perfringens Molecular docking Toxin mRNA vaccine

Journal

Toxicon : official journal of the International Society on Toxinology
ISSN: 1879-3150
Titre abrégé: Toxicon
Pays: England
ID NLM: 1307333

Informations de publication

Date de publication:
05 Jan 2024
Historique:
received: 09 09 2023
revised: 03 12 2023
accepted: 19 12 2023
medline: 8 1 2024
pubmed: 8 1 2024
entrez: 7 1 2024
Statut: aheadofprint

Résumé

Clostridium perfringens is a bacterium that causes gastrointestinal diseases in humans and animals. The several powerful toxins such as alpha toxin (CPA), beta toxin (CPB), enterotoxin (CPE), Epsilon toxin (ETX), and theta toxin, play a major role in its pathogenesis. Traditional vaccine development methods are time-consuming and costly. In silico approaches offer an alternative strategy for designing vaccines by analyzing biological data and predicting immunogenic peptides. In this study, computational tools were utilized to design a RNA vaccine targeting C. perfringens toxins. Toxin protein sequences were retrieved and their linear B-cell, MHCI, and MHCII binding epitopes were predicted. Allergenicity, toxigenicity, and IFN-γ induction were assessed to select non-allergenic, non-toxic, and IFN-γ-inducing epitopes. Molecular docking was performed to identify epitopes that fit within the binding cleft of MHC alleles. A final peptide vaccine construct was designed with selected epitopes separated by a linker sequence. The antigenicity and physicochemical properties of the vaccine were evaluated. Immune response simulation showed enhanced secondary and tertiary immune responses, increased levels of immunoglobulins, cytotoxic T lymphocytes, helper T lymphocytes, macrophage activity, and elevated levels IFN-γ and interleukin-2. Docking analysis was done to assess interactions between the vaccine structure and Toll-like receptors. Codon optimization was performed, and a final RNA vaccine construct was designed. The secondary structure of the RNA vaccine was predicted and validated. Overall, this study demonstrates the potential of in silico approaches for designing an RNA vaccine against C. perfringens toxins, contributing to improved prevention and control of associated diseases.

Identifiants

pubmed: 38185287
pii: S0041-0101(23)00395-1
doi: 10.1016/j.toxicon.2023.107584
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

107584

Informations de copyright

Copyright © 2023. Published by Elsevier Ltd.

Déclaration de conflit d'intérêts

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Parisa Asadollahi (P)

Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.

Behrooz Sadeghi Kalani (BS)

Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran. Electronic address: sadeghi-b@medilam.ac.ir.

Classifications MeSH