Metformin and adipose-derived stem cell combination therapy alleviates radiation-induced skin fibrosis in mice.

Adipose stem cells Fibrosis Metformin Prophylactic therapy Radiation

Journal

Stem cell research & therapy
ISSN: 1757-6512
Titre abrégé: Stem Cell Res Ther
Pays: England
ID NLM: 101527581

Informations de publication

Date de publication:
08 Jan 2024
Historique:
received: 14 11 2023
accepted: 26 12 2023
medline: 8 1 2024
pubmed: 8 1 2024
entrez: 7 1 2024
Statut: epublish

Résumé

Radiation therapy often leads to late radiation-induced skin fibrosis (RISF), causing movement impairment and discomfort. We conducted a comprehensive study to assess the effectiveness of metformin and adipose-derived stem cells (ASCs), whether autologous or allogeneic, individually or in combination therapy, in mitigating RISF. Using a female C57BL/6J mouse model subjected to hind limb irradiation as a representative RISF model, we evaluated metformin, ASCs, or their combination in two contexts: prophylactic (started on day 1 post-irradiation) and therapeutic (initiated on day 14 post-irradiation, coinciding with fibrosis symptoms). We measured limb movement, examined skin histology, and analyzed gene expression to assess treatment efficacy. Prophylactic metformin and ASCs, whether autologous or allogeneic, effectively prevented late fibrosis, with metformin showing promising results. However, combination therapy did not provide additional benefits when used prophylactically. Autologous ASCs, alone or with metformin, proved most effective against late-stage RISF. Prophylactic intervention outperformed late therapy for mitigating radiation skin damage. Co-culture studies revealed that ASCs and metformin downregulated inflammation and fibrotic gene expression in both mouse and human fibroblasts. Our study suggests metformin's potential as a prophylactic measure to prevent RISF, and the combination of ASCs and metformin holds promise for late-stage RISF treatment. These findings have clinical implications for improving the quality of life for those affected by radiation-induced skin fibrosis.

Sections du résumé

BACKGROUND BACKGROUND
Radiation therapy often leads to late radiation-induced skin fibrosis (RISF), causing movement impairment and discomfort. We conducted a comprehensive study to assess the effectiveness of metformin and adipose-derived stem cells (ASCs), whether autologous or allogeneic, individually or in combination therapy, in mitigating RISF.
METHODS METHODS
Using a female C57BL/6J mouse model subjected to hind limb irradiation as a representative RISF model, we evaluated metformin, ASCs, or their combination in two contexts: prophylactic (started on day 1 post-irradiation) and therapeutic (initiated on day 14 post-irradiation, coinciding with fibrosis symptoms). We measured limb movement, examined skin histology, and analyzed gene expression to assess treatment efficacy.
RESULTS RESULTS
Prophylactic metformin and ASCs, whether autologous or allogeneic, effectively prevented late fibrosis, with metformin showing promising results. However, combination therapy did not provide additional benefits when used prophylactically. Autologous ASCs, alone or with metformin, proved most effective against late-stage RISF. Prophylactic intervention outperformed late therapy for mitigating radiation skin damage. Co-culture studies revealed that ASCs and metformin downregulated inflammation and fibrotic gene expression in both mouse and human fibroblasts.
CONCLUSIONS CONCLUSIONS
Our study suggests metformin's potential as a prophylactic measure to prevent RISF, and the combination of ASCs and metformin holds promise for late-stage RISF treatment. These findings have clinical implications for improving the quality of life for those affected by radiation-induced skin fibrosis.

Identifiants

pubmed: 38185658
doi: 10.1186/s13287-023-03627-7
pii: 10.1186/s13287-023-03627-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

13

Subventions

Organisme : Division of Intramural Research, National Institute of Allergy and Infectious Diseases
ID : 5R21AI153971-02
Organisme : DOD Peer Reviewed Cancer Research Program
ID : W81XWH-19-PRMRP-DA

Informations de copyright

© 2024. The Author(s).

Références

Barton MB, Jacob S, Shafiq J, Wong K, Thompson SR, Hanna TP, Delaney GP. Estimating the demand for radiotherapy from the evidence: a review of changes from 2003 to 2012. Radiother Oncol. 2014;112:140–4.
pubmed: 24833561 doi: 10.1016/j.radonc.2014.03.024
Jaffray DA, Gospodarowicz MK. Radiation therapy for cancer. Cancer: Disease Control Priorities. 2015;3:239–48.
Dangwal S, Stratmann B, Bang C, Lorenzen JM, Kumarswamy R, Fiedler J, Falk CS, Scholz CJ, Thum T, Tschoepe D. Impairment of wound healing in patients with type 2 diabetes mellitus influences circulating microrna patterns via inflammatory cytokines significance. Arterioscler Thromb Vasc Biol. 2015;35:1480–8.
pubmed: 25814674 doi: 10.1161/ATVBAHA.114.305048
Arcangeli G, Friedman M, Paoluzi R. A quantitative study of late radiation effect on normal skin and subcutaneous tissues in human beings. Br J Radiol. 1974;47:44–50. https://doi.org/10.1259/0007-1285-47-553-44 .
doi: 10.1259/0007-1285-47-553-44 pubmed: 4809425
Jones RE, Foster DS, Hu MS, Longaker MT. Wound healing and fibrosis: current stem cell therapies. Transfusion. 2019;59:884–92.
pubmed: 30737822 pmcid: 7089773 doi: 10.1111/trf.14836
Gallet P, Phulpin B, Merlin J-L, Leroux A, Bravetti P, Mecellem H, Tran N, Dolivet G. Long-term alterations of cytokines and growth factors expression in irradiated tissues and relation with histological severity scoring. PLoS ONE. 2011;6:e29399.
pubmed: 22216271 pmcid: 3245280 doi: 10.1371/journal.pone.0029399
Abraham DJ, Eckes B, Rajkumar V, Krieg T. New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma. Curr Rheumatol Rep. 2007;9:136–43.
pubmed: 17502044 doi: 10.1007/s11926-007-0008-z
Kumar V. Tissue renewal and repair: regeneration, healing, and fibrosis. Pathol Basis Disease 87–2005;118.
Bentzen SM. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer. 2006;6:702.
pubmed: 16929324 doi: 10.1038/nrc1950
Martin M, Lefaix J-L, Delanian S. TGF-β1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys. 2000;47:277–90.
pubmed: 10802350 doi: 10.1016/S0360-3016(00)00435-1
Ehrhart E, Segarini P, Tsang M, Carroll AG, Barcellos-Hoff M-H. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation. FASEB J. 1997;11:991–1002.
pubmed: 9337152 doi: 10.1096/fasebj.11.12.9337152
Leask A, Abraham DJ. TGF-β signaling and the fibrotic response. FASEB J. 2004;18:816–27.
pubmed: 15117886 doi: 10.1096/fj.03-1273rev
Schultze-Mosgau S, Blaese MA, Grabenbauer G, Wehrhan F, Kopp J, Amann K, Rodemann HP, Rödel F. Smad-3 and Smad-7 expression following anti-transforming growth factor beta 1 (TGFβ1)-treatment in irradiated rat tissue. Radiother Oncol. 2004;70:249–59.
pubmed: 15064009 doi: 10.1016/j.radonc.2004.01.010
Delanian S, Porcher R, Balla-Mekias S, Lefaix J-L. Randomized, placebo-controlled trial of combined pentoxifylline and tocopherol for regression of superficial radiation-induced fibrosis. J Clin Oncol. 2003;21:2545–50.
pubmed: 12829674 doi: 10.1200/JCO.2003.06.064
Miller ER, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142:37–46.
pubmed: 15537682 doi: 10.7326/0003-4819-142-1-200501040-00110
Delanian S, Balla-Mekias S, Lefaix J-L. Striking regression of chronic radiotherapy damage in a clinical trial of combined pentoxifylline and tocopherol. J Clin Oncol. 1999;17:3283–90.
pubmed: 10506631 doi: 10.1200/JCO.1999.17.10.3283
Haddad P, Kalaghchi B, Amouzegar-Hashemi F. Pentoxifylline and vitamin E combination for superficial radiation-induced fibrosis: a phase II clinical trial. Radiother Oncol. 2005;77:324–6.
pubmed: 16236376 doi: 10.1016/j.radonc.2005.09.014
Nogueira RMP, Vital FMR, Bernabé DG, de Carvalho MB. Interventions for radiation-induced fibrosis in patients with breast cancer: Systematic review and meta-analyses. Adv Radiat Oncol. 2022;7: 100912.
pubmed: 35647406 pmcid: 9133365 doi: 10.1016/j.adro.2022.100912
Shukla L, Morrison WA, Shayan R. Adipose-derived stem cells in radiotherapy injury: a new frontier. Front Surg. 2015;2:1. https://doi.org/10.3389/fsurg.2015.00001 .
doi: 10.3389/fsurg.2015.00001 pubmed: 25674565 pmcid: 4309196
Rigotti G, Marchi A, Galie M, Baroni G, Benati D, Krampera M, Pasini A, Sbarbati A. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg. 2007;119:1409–22. https://doi.org/10.1097/01.prs.0000256047.47909.71 .
doi: 10.1097/01.prs.0000256047.47909.71 pubmed: 17415234
Sultan SM, Stern CS, Allen RJ Jr, Thanik VD, Chang CC, Nguyen PD, Canizares O, Szpalski C, Saadeh PB, Warren SM, et al. Human fat grafting alleviates radiation skin damage in a murine model. Plast Reconstr Surg. 2011;128:363–72. https://doi.org/10.1097/PRS.0b013e31821e6e90 .
doi: 10.1097/PRS.0b013e31821e6e90 pubmed: 21502909
Garza RM, Paik KJ, Chung MT, Duscher D, Gurtner GC, Longaker MT, Wan DC. Studies in fat grafting: Part III. Fat grafting irradiated tissue–improved skin quality and decreased fat graft retention. Plast Reconstr Surg. 2014;134:249–57. https://doi.org/10.1097/PRS.0000000000000326 .
doi: 10.1097/PRS.0000000000000326 pubmed: 25068325 pmcid: 4116637
Ejaz A, Epperly MW, Hou W, Greenberger JS, Rubin JP. Adipose-derived stem cell therapy ameliorates ionizing irradiation fibrosis via hepatocyte growth factor-mediated transforming growth factor-β downregulation and recruitment of bone marrow cells. Stem Cells. 2019;37:791–802.
pubmed: 30861238 doi: 10.1002/stem.3000
Chinnapaka S, Yang KS, Surucu Y, Bengur FB, Arellano JA, Tirmizi Z, Malekzadeh H, Epperly MW, Hou W, Greenberger JS. Human polarization adipose ECM alleviates radiation induced skin fibrosis via endothelial cell-mediated M2 macrophage. iScience 2023;107660.
Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab. 2014;20:953–66.
pubmed: 25456737 doi: 10.1016/j.cmet.2014.09.018
Takahashi F, Sato T, Nurwidya F, Kobayashi I, Kanemaru R, Ko R, Yagishita S, Muraki K, Takahashi M, Kato N. Metformin inhibits bleomycin-induced pulmonary fibrosis in mice. Am J Respir Crit Care Med. 1962;189:2014.
Wang J, Wang Y, Han J, Mei H, Yu D, Ding Q, Zhang T, Wu G, Peng G, Lin Z. Metformin attenuates radiation-induced pulmonary fibrosis in a murine model. Radiat Res. 2017;188:105–13.
pubmed: 28437189 doi: 10.1667/RR14708.1
Kim J-M, Yoo H, Kim J-Y, Oh SH, Kang JW, Yoo BR, Han SY, Kim CS, Choi WH, Lee E-J. Metformin alleviates radiation-induced skin fibrosis via the downregulation of FOXO3. Cell Physiol Biochem. 2018;48:959–70.
pubmed: 30036874 doi: 10.1159/000491964
Surucu Y, Bengur FB, Yang KS, Schilling BK, Baker JS, Shabbir S, Fisher R, Epperly MW, Greenberger JS, Rubin JP. Establishment of a robust and reproducible model of radiation-induced skin and muscle fibrosis. JoVE (J Visual Exp). 2022;e64251.
Brand RM, Epperly MW, Stottlemyer JM, Skoda EM, Gao X, Li S, Huq S, Wipf P, Kagan VE, Greenberger JS. A topical mitochondria-targeted redox-cycling nitroxide mitigates oxidative stress-induced skin damage. J Investig Dermatol. 2017;137:576–86.
pubmed: 27794421 doi: 10.1016/j.jid.2016.09.033
Ejaz A, Greenberger JS, Rubin PJ. Understanding the mechanism of radiation induced fibrosis and therapy options. Pharmacol Therapeutics 2019. 107399.
Khonji N. Breast reconstruction using autologous fat. Br J Surg. 2010;97:795–6. https://doi.org/10.1002/bjs.7101 .
doi: 10.1002/bjs.7101 pubmed: 20473989
Kolle SF, Fischer-Nielsen A, Mathiasen AB, Elberg JJ, Oliveri RS, Glovinski PV, Kastrup J, Kirchhoff M, Rasmussen BS, Talman ML, et al. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet. 2013;382:1113–20. https://doi.org/10.1016/S0140-6736(13)61410-5 .
doi: 10.1016/S0140-6736(13)61410-5 pubmed: 24075051
Akita S, Yoshimoto H, Ohtsuru A, Hirano A, Yamashita S. Autologous adipose-derived regenerative cells are effective for chronic intractable radiation injuries. Radiat Prot Dosimetry. 2012;151:656–60. https://doi.org/10.1093/rpd/ncs176 .
doi: 10.1093/rpd/ncs176 pubmed: 22914335
Mizuno H, Hyakusoku H. Fat grafting to the breast and adipose-derived stem cells: recent scientific consensus and controversy. Aesthet Surg J. 2010;30:381–7. https://doi.org/10.1177/1090820X10373063 .
doi: 10.1177/1090820X10373063 pubmed: 20601560
Faghahati S, Delaporte T, Toussoun G, Gleizal A, Morel F, Delay E. Treatment by fat tissue transfer for radiation injury in childhood facial cancer. Ann Chir Plast Esthet. 2010;55:169–78. https://doi.org/10.1016/j.anplas.2009.05.004 .
doi: 10.1016/j.anplas.2009.05.004 pubmed: 19679386
Sowa Y, Inafuku N, Kishida T, Mori M, Mazda O, Yoshimura K. Prophylactic application of human adipose tissue-derived products to prevent radiation disorders. Plast Reconstr Surg. 2023;151:1207–16.
pubmed: 36728661 doi: 10.1097/PRS.0000000000010132
Yang P, Zhang S, Yan T, Li F, Zhang S. The therapeutic application of stem cells and their derived exosomes in the treatment of radiation-induced skin injury. Radiat Res. 2023;199:182–201.
pubmed: 36630584 doi: 10.1667/RADE-22-00023.1
Luck J, Weil BD, Lowdell M, Mosahebi A. Adipose-derived stem cells for regenerative wound healing applications: understanding the clinical and regulatory environment. Aesthetic Surg J. 2020;40:784–99.
doi: 10.1093/asj/sjz214
Malekzadeh H, Tirmizi Z, Arellano JA, Egro FM, Ejaz A. Application of adipose-tissue derived products for burn wound healing. Pharmaceuticals. 2023;16:1302.
pubmed: 37765109 pmcid: 10534650 doi: 10.3390/ph16091302
Fiaschetti V, Pistolese CA, Fornari M, Liberto V, Cama V, Gentile P, Floris M, Floris R, Cervelli V, Simonetti G. Magnetic resonance imaging and ultrasound evaluation after breast autologous fat grafting combined with platelet-rich plasma. Plast Reconstr Surg. 2013;132:498e–509e.
pubmed: 24076696 doi: 10.1097/PRS.0b013e3182a00e57
Zwierzina ME, Ejaz A, Bitsche M, Blumer MJ, Mitterberger MC, Mattesich M, Amann A, Kaiser A, Pechriggl EJ, Hörl S. Characterization of DLK1 (PREF1)+/CD34+ cells in vascular stroma of human white adipose tissue. Stem Cell Res. 2015;15:403–18.
pubmed: 26342195 doi: 10.1016/j.scr.2015.08.004
Trivisonno A, Alexander RW, Baldari S, Cohen SR, Di Rocco G, Gentile P, Magalon G, Magalon J, Miller RB, Womack H. Intraoperative strategies for minimal manipulation of autologous adipose tissue for cell-and tissue-based therapies: concise review. Stem Cells Transl Med. 2019;8:1265–71.
pubmed: 31599497 pmcid: 6877766 doi: 10.1002/sctm.19-0166
Gentile P, Kothari A, Casella D, Calabrese C. Fat graft enhanced with adipose-derived stem cells in aesthetic breast augmentation: clinical, histological, and instrumental evaluation. Aesthetic Surg J. 2020;40:962–77.
doi: 10.1093/asj/sjz292
Krastev TK, Schop SJ, Hommes J, Piatkowski A, van Der Hulst RR. Autologous fat transfer to treat fibrosis and scar-related conditions: a systematic review and meta-analysis. J Plast Reconstr Aesthet Surg. 2020;73:2033–48.
pubmed: 32948494 doi: 10.1016/j.bjps.2020.08.023
Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60:1577–85.
pubmed: 28776086 pmcid: 5552828 doi: 10.1007/s00125-017-4342-z
Choi SM, Jang A-H, Kim H, Lee KH, Kim YW. Metformin reduces bleomycin-induced pulmonary fibrosis in mice. J Korean Med Sci. 2016;31:1419–25.
pubmed: 27510385 pmcid: 4974183 doi: 10.3346/jkms.2016.31.9.1419
Feng Y, Wang S, Zhang Y, Xiao H. Metformin attenuates renal fibrosis in both AMPK α2-dependent and independent manners. Clin Exp Pharmacol Physiol. 2017;44:648–55.
pubmed: 28273365 doi: 10.1111/1440-1681.12748
Mummidi S, Das NA, Carpenter AJ, Kandikattu H, Krenz M, Siebenlist U, Valente AJ, Chandrasekar B. Metformin inhibits aldosterone-induced cardiac fibroblast activation, migration and proliferation in vitro, and reverses aldosterone+ salt-induced cardiac fibrosis in vivo. J Mol Cell Cardiol. 2016;98:95–102.
pubmed: 27423273 doi: 10.1016/j.yjmcc.2016.07.006
Ursini F, Grembiale RD, D’Antona L, Gallo E, D’Angelo S, Citraro R, Visca P, Olivieri I, De Sarro G, Perrotti N. Oral metformin ameliorates bleomycin-induced skin fibrosis. J Invest Dermatol. 2016;136:1892–4.
pubmed: 27251791 doi: 10.1016/j.jid.2016.05.097
Meng X-M, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325.
pubmed: 27108839 doi: 10.1038/nrneph.2016.48
Shen AH, Borrelli MR, Adem S, Deleon NMD, Patel RA, Mascharak S, Yen SJ, Sun BY, Taylor WL IV, Januszyk M. Prophylactic treatment with transdermal deferoxamine mitigates radiation-induced skin fibrosis. Sci Rep. 2020;10:12346.
pubmed: 32704071 pmcid: 7378074 doi: 10.1038/s41598-020-69293-4
Al-Ghadban S, Artiles M, Bunnell BA. Adipose stem cells in regenerative medicine: looking forward. Front Bioeng Biotechnol. 2022;9:837464.
pubmed: 35096804 pmcid: 8792599 doi: 10.3389/fbioe.2021.837464
Ejaz A, Greenberger JS, Rubin PJ. Understanding the mechanism of radiation induced fibrosis and therapy options. Pharmacol Ther. 2019;204:107399.
pubmed: 31419518 doi: 10.1016/j.pharmthera.2019.107399
Borovikova AA, Ziegler ME, Banyard DA, Wirth GA, Paydar KZ, Evans GR, Widgerow AD. Adipose-derived tissue in the treatment of dermal fibrosis: antifibrotic effects of adipose-derived stem cells. Ann Plast Surg. 2018;80:297–307.
pubmed: 29309331 doi: 10.1097/SAP.0000000000001278
Xin X, Yang S, Ingle G, Zlot C, Rangell L, Kowalski J, Schwall R, Ferrara N, Gerritsen ME. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol. 2001;158:1111–20.
pubmed: 11238059 pmcid: 1850376 doi: 10.1016/S0002-9440(10)64058-8
Giannopoulou M, Dai C, Tan X, Wen X, Michalopoulos GK, Liu Y. Hepatocyte growth factor exerts its anti-inflammatory action by disrupting nuclear factor-κB signaling. Am J Pathol. 2008;173:30–41.
pubmed: 18502824 pmcid: 2438283 doi: 10.2353/ajpath.2008.070583
Liu Y. Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. Am J Physiol-Renal Physiol. 2004;287:F7–16.
pubmed: 15180923 doi: 10.1152/ajprenal.00451.2003
Rosu-Myles M, Stewart E, Trowbridge J, Ito CY, Zandstra P, Bhatia M. A unique population of bone marrow cells migrates to skeletal muscle via hepatocyte growth factor/c-met axis. J Cell Sci. 2005;118:4343–52.
pubmed: 16144866 doi: 10.1242/jcs.02555
Dainiak N, Gent RN, Carr Z, Schneider R, Bader J, Buglova E, Chao N, Coleman CN, Ganser A, Gorin C. Literature review and global consensus on management of acute radiation syndrome affecting nonhematopoietic organ systems. Disaster Med Public Health Prep. 2011;5:183–201.
pubmed: 21986999 pmcid: 3638239 doi: 10.1001/dmp.2011.73
Chinnapaka S, Yang KS, Samadi Y, Epperly MW, Hou W, Greenberger JS, Ejaz A, Rubin JP. Allogeneic adipose‐derived stem cells mitigate acute radiation syndrome by the rescue of damaged bone marrow cells from apoptosis. Stem Cells Transl Med. 2021
Wang D, Zhang H, Liang J, Li X, Feng X, Wang H, Hua B, Liu B, Lu L, Gilkeson GS. Allogeneic mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus: 4 years of experience. Cell Transplant. 2013;22:2267–77.
pubmed: 24388428 doi: 10.3727/096368911X582769c
Taketani T, Oyama C, Mihara A, Tanabe Y, Abe M, Hirade T, Yamamoto S, Bo R, Kanai R, Tadenuma T. Ex vivo expanded allogeneic mesenchymal stem cells with bone marrow transplantation improved osteogenesis in infants with severe hypophosphatasia. Cell Transplant. 2015;24:1931–43.
pubmed: 25396326 doi: 10.3727/096368914X685410

Auteurs

Hamid Malekzadeh (H)

Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA.

Yusuf Surucu (Y)

Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA.

Somaiah Chinnapaka (S)

Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA.

Katherine S Yang (KS)

Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA.

José A Arellano (JA)

Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA.

Yasamin Samadi (Y)

Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA.

Michael W Epperly (MW)

Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.

Joel S Greenberger (JS)

Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.

J Peter Rubin (JP)

Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA.
McGowan Institute, University of Pittsburgh, Pittsburgh, USA.
Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, USA.

Asim Ejaz (A)

Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA. ejaza@upmc.edu.

Classifications MeSH