Electronic Structure of Isolated Graphene Nanoribbons in Solution Revealed by Two-Dimensional Electronic Spectroscopy.
graphene nanoribbons
inhomogeneous broadening
two-dimensional electronic spectroscopy
ultrafast spectroscopy
vibronic coupling
Journal
Nano letters
ISSN: 1530-6992
Titre abrégé: Nano Lett
Pays: United States
ID NLM: 101088070
Informations de publication
Date de publication:
08 Jan 2024
08 Jan 2024
Historique:
medline:
8
1
2024
pubmed:
8
1
2024
entrez:
8
1
2024
Statut:
aheadofprint
Résumé
Structurally well-defined graphene nanoribbons (GNRs) are nanostructures with unique optoelectronic properties. In the liquid phase, strong aggregation typically hampers the assessment of their intrinsic properties. Recently we reported a novel type of GNRs, decorated with aliphatic side chains, yielding dispersions consisting mostly of isolated GNRs. Here we employ two-dimensional electronic spectroscopy to unravel the optical properties of isolated GNRs and disentangle the transitions underlying their broad and rather featureless absorption band. We observe that vibronic coupling, typically neglected in modeling, plays a dominant role in the optical properties of GNRs. Moreover, a strong environmental effect is revealed by a large inhomogeneous broadening of the electronic transitions. Finally, we also show that the photoexcited bright state decays, on the 150 fs time scale, to a dark state which is in thermal equilibrium with the bright state, that remains responsible for the emission on nanosecond time scales.
Identifiants
pubmed: 38189787
doi: 10.1021/acs.nanolett.3c02665
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM