Surgical radioguidance with beta-emitting radionuclides; challenges and possibilities: A position paper by the EANM.
Beta emitting Radionuclides
Image guided surgery
Radiation exposure
Radioguidance
Radiotracers
Journal
European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988
Informations de publication
Date de publication:
08 Jan 2024
08 Jan 2024
Historique:
received:
14
07
2023
accepted:
01
12
2023
medline:
8
1
2024
pubmed:
8
1
2024
entrez:
8
1
2024
Statut:
aheadofprint
Résumé
Radioguidance that makes use of β-emitting radionuclides is gaining in popularity and could have potential to strengthen the range of existing radioguidance techniques. While there is a strong tendency to develop new PET radiotracers, due to favorable imaging characteristics and the success of theranostics research, there are practical challenges that need to be overcome when considering use of β-emitters for surgical radioguidance. In this position paper, the EANM identifies the possibilities and challenges that relate to the successful implementation of β-emitters in surgical guidance, covering aspects related to instrumentation, radiation protection, and modes of implementation.
Identifiants
pubmed: 38189911
doi: 10.1007/s00259-023-06560-2
pii: 10.1007/s00259-023-06560-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Ametamey SM, Honer M, Schubiger PA. Molecular imaging with PET. Chem Rev. 2008;108:1501–16. https://doi.org/10.1021/cr0782426 .
doi: 10.1021/cr0782426
pubmed: 18426240
Hussain T, Nguyen QT. Molecular imaging for cancer diagnosis and surgery. Adv Drug Deliv Rev. 2014;66:90–100. https://doi.org/10.1016/j.addr.2013.09.007 .
doi: 10.1016/j.addr.2013.09.007
pubmed: 24064465
Filippi L, Chiaravalloti A, Schillaci O, Cianni R, Bagni O. Theranostic approaches in nuclear medicine: current status and future prospects. Expert Rev Med Devices. 2020;17:331–43. https://doi.org/10.1080/17434440.2020.1741348 .
doi: 10.1080/17434440.2020.1741348
pubmed: 32157920
Camillocci ES, Baroni G, Bellini F, Bocci V, Collamati F, Cremonesi M, et al. A novel radioguided surgery technique exploiting β−decays. Sci Rep. 2014;4:1–5. https://doi.org/10.1038/srep04401 .
doi: 10.1038/srep04401
Gulec SA, Hoenie E, Hostetter R, Schwartzentruber D. PET probe-guided surgery: applications and clinical protocol. World J Surg Oncol. 2007;5:1–7. https://doi.org/10.1186/1477-7819-5-65 .
doi: 10.1186/1477-7819-5-65
Grootendorst MR, Cariati M, Kothari A, Tuch DS, Purushotham A. Cerenkov luminescence imaging (CLI) for image-guided cancer surgery. Clin Transl Imaging. 2016;4:353–66. https://doi.org/10.1007/s40336-016-0183-x .
doi: 10.1007/s40336-016-0183-x
pubmed: 27738626
pmcid: 5037157
Povoski SP, Neff RL, Mojzisik CM, O’Malley DM, Hinkle GH, Hall NC, et al. A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol. 2009;7:1–63. https://doi.org/10.1186/1477-7819-7-11 .
doi: 10.1186/1477-7819-7-11
Tsuchimochi M, Hayama K. Intraoperative gamma cameras for radioguided surgery: technical characteristics, performance parameters, and clinical applications. Phys Med. 2013;29:126–38. https://doi.org/10.1016/j.ejmp.2012.05.002 .
doi: 10.1016/j.ejmp.2012.05.002
pubmed: 22672926
Robu S, Schottelius M, Eiber M, Maurer T, Gschwend J, Schwaiger M, et al. Preclinical evaluation and first patient application of
doi: 10.2967/jnumed.116.178939
pubmed: 27635024
Alex J, Krag D. Gamma-probe guided localization of lymph nodes. Surg Oncol. 1993;2:137–43. https://doi.org/10.1016/0960-7404(93)90001-F .
doi: 10.1016/0960-7404(93)90001-F
pubmed: 8252203
Alex JC. Candidate’s thesis: the application of sentinel node radiolocalization to solid tumors of the head and neck: a 10-year experience. Laryngoscope. 2004;114:2–19. https://doi.org/10.1097/00005537-200401000-00002 .
doi: 10.1097/00005537-200401000-00002
pubmed: 14709988
Valdes Olmos RA, Vidal-Sicart S, Manca G, Mariani G, Leon-Ramirez LF, Rubello D, et al. Advances in radioguided surgery in oncology. Q J Nucl Med Mol Imaging. 2017;61:247–70. https://doi.org/10.23736/S1824-4785.17.02995-8 .
doi: 10.23736/S1824-4785.17.02995-8
pubmed: 28569457
Bailey DL, Willowson KP. Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality. Eur J Nucl Med Mol Imaging. 2014;41:17–25. https://doi.org/10.1007/s00259-013-2542-4 .
doi: 10.1007/s00259-013-2542-4
Maurer T, Robu S, Schottelius M, Schwamborn K, Rauscher I, van den Berg NS, et al.
doi: 10.1016/j.eururo.2018.03.013
pubmed: 29625755
Mix M, Schultze-Seemann W, von Büren M, Sigle A, Omrane MA, Grabbert MT, et al.
doi: 10.1186/s13550-021-00762-1
Darr C, Harke NN, Radtke JP, Yirga L, Kesch C, Grootendorst MR, et al. Intraoperative
doi: 10.2967/jnumed.119.240424
pubmed: 32060212
pmcid: 7539648
Wilhelm AJ, Mijnhout GS, Franssen EJ. Radiopharmaceuticals in sentinel lymph-node detection–an overview. Eur J Nucl Med. 1999;26:S36–42. https://doi.org/10.1007/PL00014793 .
doi: 10.1007/PL00014793
pubmed: 10199931
Heuveling DA, Karagozoglu KH, Van Lingen A, Hoekstra OS, Van Dongen GAMS, De Bree R. Feasibility of intraoperative detection of sentinel lymph nodes with
doi: 10.1186/s13550-018-0368-6
pubmed: 29445878
pmcid: 5812956
Yılmaz B, Şahin S, Ergül N, Çolakoğlu Y, Baytekin HF, Sökmen D, et al.
Mahieu R, Krijger GC, Ververs F, de Roos R, de Bree R, de Keizer B. [
doi: 10.1007/s00259-020-05101-5
pubmed: 33159222
Mueller JJ, Dauer LT, Murali R, Iasonos A, Pandit-Taskar N, Abu-Rustum NR, et al. Positron lymphography via intracervical
doi: 10.2967/jnumed.119.230714
pubmed: 31924717
pmcid: 7413230
olde Heuvel J, de Wit-van der Veen BJ, van der Poel HG, Bekers EM, Grootendorst MR, Vyas KN, et al.
Ilhan H, Todica A, Lindner S, Boening G, Gosewisch A, Wängler C, et al. First-in-human
doi: 10.1007/s00259-019-04448-8
pubmed: 31352578
Povoski SP, Hall NC, Murrey DA Jr, Chow AZ, Gaglani JR, Bahnson EE, et al. Multimodal imaging and detection approach to
doi: 10.1186/1477-7819-9-152
pubmed: 22112047
pmcid: 3247132
Huang B, Tsai YY, Cartucho J, Vyas K, Tuch D, Giannarou S, et al. Tracking and visualization of the sensing area for a tethered laparoscopic gamma probe. Int J Comput Assist Radiol Surg. 2020;15:1389–97. https://doi.org/10.1007/s11548-020-02205-z .
doi: 10.1007/s11548-020-02205-z
pubmed: 32556919
pmcid: 7351835
van Oosterom MN, Simon H, Mengus L, Welling MM, van der Poel HG, van den Berg NS, et al. Revolutionizing (robot-assisted) laparoscopic gamma tracing using a drop-in gamma probe technology. Am J Nucl Med Mol Imaging. 2016;6:1.
pubmed: 27069762
pmcid: 4749501
Van Oosterom MN, Rietbergen DD, Welling MM, Van Der Poel HG, Maurer T, Van Leeuwen FW. Recent advances in nuclear and hybrid detection modalities for image-guided surgery. Expert Rev Med Devices. 2019;16:711–34. https://doi.org/10.1080/17434440.2019.1642104 .
doi: 10.1080/17434440.2019.1642104
pubmed: 31287715
Pitre S, Ménard L, Ricard M, Solal M, Garbay J-R, Charon Y. A hand-held imaging probe for radio-guided surgery: physical performance and preliminary clinical experience. Eur J Nucl Med. 2003;30:339–43. https://doi.org/10.1007/s00259-002-1064-2 .
doi: 10.1007/s00259-002-1064-2
Hubalewska-Dydejczyk A, Kulig J, Szybinski P, Mikolajczak R, Pach D, Sowa-Staszczak A, et al. Radio-guided surgery with the use of [
doi: 10.1007/s00259-007-0476-4
pubmed: 17653543
Nieweg OE, Tanis PJ, Kroon BB. The definition of a sentinel node. Ann Surg Oncol. 2001;8:538. https://doi.org/10.1007/s10434-001-0538-y .
doi: 10.1007/s10434-001-0538-y
pubmed: 11456054
Giammarile F, Alazraki N, Aarsvold JN, Audisio RA, Glass E, Grant SF, et al. The EANM and SNMMI practice guideline for lymphoscintigraphy and sentinel node localization in breast cancer. Eur J Nucl Med Mol Imaging. 2013;40:1932–47. https://doi.org/10.1007/s00259-013-2544-2 .
doi: 10.1007/s00259-013-2544-2
pubmed: 24085499
Bluemel C, Herrmann K, Giammarile F, Nieweg OE, Dubreuil J, Testori A, et al. EANM practice guidelines for lymphoscintigraphy and sentinel lymph node biopsy in melanoma. Eur J Nucl Med Mol Imaging. 2015;42:1750–66. https://doi.org/10.1007/s00259-015-3135-1 .
doi: 10.1007/s00259-015-3135-1
pubmed: 26205952
Patel A, Pain S, Britton P, Sinnatamby R, Warren R, Bobrow L, et al. Radioguided occult lesion localisation (ROLL) and sentinel node biopsy for impalpable invasive breast cancer. Eur J Surg Oncol. 2004;30:918–23. https://doi.org/10.1016/j.ejso.2004.07.008 .
doi: 10.1016/j.ejso.2004.07.008
pubmed: 15498634
Lovrics PJ, Goldsmith CH, Hodgson N, McCready D, Gohla G, Boylan C, et al. A multicentered, randomized, controlled trial comparing radioguided seed localization to standard wire localization for nonpalpable, invasive and in situ breast carcinomas. Ann Surg Oncol. 2011;18:3407–14. https://doi.org/10.1245/s10434-011-1699-y .
doi: 10.1245/s10434-011-1699-y
pubmed: 21533657
Travagli J, Cailleux A, Ricard M, Baudin E, Caillou B, Parmentier C, et al. Combination of radioiodine (
doi: 10.1210/jcem.83.8.5014
pubmed: 9709930
García-Talavera P, Ruano R, Rioja M, Cordero J, Razola P, Vidal-Sicart S. Radioguided surgery in neuroendocrine tumors. A review of the literature. Rev Esp Med Nucl Imagen Mol. 2014;33:358–65. https://doi.org/10.1016/j.remn.2014.07.004 .
doi: 10.1016/j.remn.2014.07.004
pubmed: 25107596
Maurer T, Graefen M, van der Poel H, Hamdy F, Briganti A, Eiber M, et al. Prostate-specific membrane antigen–guided surgery. J Nucl Med. 2020;61:6–12. https://doi.org/10.2967/jnumed.119.232330 .
doi: 10.2967/jnumed.119.232330
pubmed: 31732677
Lindner T, Altmann A, Krämer S, Kleist C, Loktev A, Kratochwil C, et al. Design and development of
doi: 10.2967/jnumed.119.239731
pubmed: 32169911
pmcid: 7539653
van Leeuwen FW, Schottelius M, Brouwer OR, Vidal-Sicart S, Achilefu S, Klode J, et al. Trending: radioactive and fluorescent bimodal/hybrid tracers as multiplexing solutions for surgical guidance. J Nucl Med. 2020;61:13–9. https://doi.org/10.2967/jnumed.119.228684 .
doi: 10.2967/jnumed.119.228684
pubmed: 31712326
Azhdarinia A, Ghosh P, Ghosh S, Wilganowski N, Sevick-Muraca EM. Dual-labeling strategies for nuclear and fluorescence molecular imaging: a review and analysis. Mol Imaging Biol. 2012;14:261–76. https://doi.org/10.1007/s11307-011-0528-9 .
doi: 10.1007/s11307-011-0528-9
pubmed: 22160875
Culver J, Akers W, Achilefu S. Multimodality molecular imaging with combined optical and SPECT/PET modalities. J Nucl Med. 2008;49:169–72. https://doi.org/10.2967/jnumed.107.043331 .
doi: 10.2967/jnumed.107.043331
pubmed: 18199608
Kubeil M, Martínez IIS, Bachmann M, Kopka K, Tuck KL, Stephan H. Dual-labelling strategies for nuclear and fluorescence molecular imaging: current status and future perspectives. Pharmaceuticals. 2022;15:432. https://doi.org/10.3390/ph15040432 .
doi: 10.3390/ph15040432
pubmed: 35455430
pmcid: 9028399
Brouwer OR, Buckle T, Vermeeren L, Klop WMC, Balm AJ, van der Poel HG, et al. Comparing the hybrid fluorescent–radioactive tracer indocyanine green–
doi: 10.2967/jnumed.112.103127
pubmed: 22645297
Heller S, Zanzonico P. Nuclear probes and intraoperative gamma cameras. Semin Nucl Med. 2011;41:166–81. https://doi.org/10.1053/j.semnuclmed.2010.12.004 .
doi: 10.1053/j.semnuclmed.2010.12.004
pubmed: 21440694
Collamati F, van Oosterom MN, De Simoni M, Faccini R, Fischetti M, Mancini Terracciano C, et al. A DROP-IN beta probe for robot-assisted
doi: 10.1186/s13550-020-00682-6
Mester C, Bruschini C, Magro P, Demartines N, Dunet V, Grigoriev E, et al. A handheld probe for β+-emitting radiotracer detection in surgery, biopsy and medical diagnostics based on Silicon Photomultipliers. IEEE Nuclear Science Symposium Conference Record. 2011;2011:253–7. https://doi.org/10.1109/NSSMIC.2011.6154491 .
doi: 10.1109/NSSMIC.2011.6154491
Gulec SA, Daghighian F, Essner R. PET-Probe: evaluation of technical performance and clinical utility of a handheld high-energy gamma probe in oncologic surgery. Ann Surg Oncol. 2016;23:9020–7. https://doi.org/10.1245/ASO.2006.05.047 .
doi: 10.1245/ASO.2006.05.047
pubmed: 16865592
Collamati F, Bocci V, Castellucci P, De Simoni M, Fanti S, Faccini R, et al. Radioguided surgery with β radiation: a novel application with Ga68. Sci Rep. 2018;8:1–9. https://doi.org/10.1038/s41598-018-34626-x .
doi: 10.1038/s41598-018-34626-x
Russomando A, Bellini F, Bocci V, Collamati F, De Lucia E, Faccini R, et al. An intraoperative β-detecting probe for radio-guided surgery in tumour resection. IEEE Trans Nucl Sci. 2016;63:2533–9. https://doi.org/10.1109/ANIMMA.2015.7465290 .
doi: 10.1109/ANIMMA.2015.7465290
Daghighian F, Mazziotta JC, Hoffman EJ, Shenderov P, Eshaghian B, Siegel S, et al. Intraoperative beta probe: a device for detecting tissue labeled with positron or electron emitting isotopes during surgery. Med Phys. 1994;21:153–7. https://doi.org/10.1118/1.597240 .
doi: 10.1118/1.597240
pubmed: 8164582
Mancini-Terracciano C, Donnarumma R, Bencivenga G, Bocci V, Cartoni A, Collamati F, et al. Feasibility of beta-particle radioguided surgery for a variety of “nuclear medicine” radionuclides. Phys Med. 2017;43:127–33. https://doi.org/10.1016/j.ejmp.2017.10.012 .
doi: 10.1016/j.ejmp.2017.10.012
pubmed: 29195555
Yamamoto S, Matsumoto K, Sakamoto S, Tarutani K, Minato K, Senda M. An intra-operative positron probe with background rejection capability for FDG-guided surgery. Ann Nucl Med. 2005;19:23–8. https://doi.org/10.1007/bf02986331 .
doi: 10.1007/bf02986331
pubmed: 15770969
Daghighian F, Fong Y, et al. Detectors for intraoperative molecular imaging: from probes to scanners. In: Fong YGP, Lewis J, et al., editors. Imaging and visualization in the modern operating room. New York, NY: Springer; 2015. p. 55–67.
doi: 10.1007/978-1-4939-2326-7_4
Dell’Oglio P, Meershoek P, Maurer T, Wit EM, van Leeuwen PJ, van der Poel HG, et al. A DROP-IN gamma probe for robot-assisted radioguided surgery of lymph nodes during radical prostatectomy. Eur Urol. 2021;79:124–32. https://doi.org/10.1016/j.eururo.2020.10.031 .
doi: 10.1016/j.eururo.2020.10.031
pubmed: 33203549
Sabet H, Stack BC, Nagarkar VV. A hand-held, intra-operative positron imaging probe for surgical applications. IEEE Trans Nucl Sci. 2015;62:1927–34. https://doi.org/10.1109/TNS.2015.2446434 .
doi: 10.1109/TNS.2015.2446434
Spadola S, Verdier M-A, Pinot L, Esnault C, Dinu N, Charon Y, et al. Design optimization and performances of an intraoperative positron imaging probe for radioguided cancer surgery. J Instrum. 2016;11:P12019. https://doi.org/10.1088/1748-0221/11/12/P12019 .
doi: 10.1088/1748-0221/11/12/P12019
Verdier M-A, Spadola S, Pinot L, Esnault C, Charon Y, Duval M-A, et al. Gamma-background rejection method for a dual scintillator positron probe dedicated to radio-guided surgery. Nucl Instrum Methods Phys Res A. 2018;912:315–9. https://doi.org/10.1016/j.nima.2017.12.001 .
doi: 10.1016/j.nima.2017.12.001
Chen L, Gobar LS, Knowles NG, Liu Z, Gmitro AF, Barrett HH. Direct imaging of radionuclide-produced electrons and positrons with an ultrathin phosphor. J Nucl Med. 2008;49:1141. https://doi.org/10.2967/jnumed.107.040568 .
doi: 10.2967/jnumed.107.040568
pubmed: 18552136
Lauria A, Mettivier G, Montesi MC, Aloj L, Lastoria S, Aurilio M, et al. Experimental study for an intraoperative probe for
doi: 10.1016/j.nima.2007.01.152
Wang Q, Tous J, Liu Z, Ziegler S, Shi K. Evaluation of Timepix silicon detector for the detection of
doi: 10.1088/1748-0221/9/05/C05067
Yamamoto S, Higashi T, Matsumoto K, Senda M. Development of a positron-imaging detector with background rejection capability. Ann Nucl Med. 2006;20:655–62. https://doi.org/10.1007/BF02984676 .
doi: 10.1007/BF02984676
pubmed: 17385303
Llopart X, Campbell M, Dinapoli R, Segundo DS, Pernigotti E. Medipix2: A 64-k pixel readout chip with 55-/spl mu/m square elements working in single photon counting mode. IEEE Trans Nucl Sci. 2002;49:2279–83. https://doi.org/10.1109/TNS.2002.803788 .
doi: 10.1109/TNS.2002.803788
Llopart X, Ballabriga R, Campbell M, Tlustos L, Wong W. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl Instrum Methods Phys Res A. 2007;581:485–94. https://doi.org/10.1016/j.nima.2007.08.079 .
doi: 10.1016/j.nima.2007.08.079
Russo P, Lauria A, Mettivier G, Montesi MC, Marotta M, Aloj L, et al.
doi: 10.1088/0031-9155/53/21/022
pubmed: 18923198
Wang Q, Liu Z, Ziegler SI, Shi K. Enhancing spatial resolution of
doi: 10.1088/0031-9155/60/13/5261
pubmed: 26086805
Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3:1–17. https://doi.org/10.1186/s40658-016-0144-5 .
doi: 10.1186/s40658-016-0144-5
Ruggiero A, Holland JP, Lewis JS, Grimm J. Cerenkov luminescence imaging of medical isotopes. J Nucl Med. 2010;51:1123–30. https://doi.org/10.2967/jnumed.110.076521 .
doi: 10.2967/jnumed.110.076521
pubmed: 20554722
Das S, Thorek DL, Grimm J. Cerenkov imaging. Adv Cancer Res. 2014;124:213–34. https://doi.org/10.1016/B978-0-12-411638-2.00006-9 .
doi: 10.1016/B978-0-12-411638-2.00006-9
pubmed: 25287690
pmcid: 4329979
Mc Larney B, Zhang Q, Pratt EC, Skubal M, Isaac E, Hsu HT, et al. Shortwave infrared detection of medical radioisotope Cerenkov luminescence. J Nucl Med. 2022. https://doi.org/10.2967/jnumed.122.264079 .
doi: 10.2967/jnumed.122.264079
pubmed: 35738902
Darr C, Krafft U, Fendler W, Costa PF, Barbato F, Praus C, et al. First-in-man intraoperative Cerenkov luminescence imaging for oligometastatic prostate cancer using
doi: 10.1007/s00259-020-04778-y
pubmed: 32356006
Hu H, Cao X, Kang F, Wang M, Lin Y, Liu M, et al. Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results. Eur Radiol. 2015;25:1814–22. https://doi.org/10.1007/s00330-014-3574-2 .
doi: 10.1007/s00330-014-3574-2
pubmed: 25577521
Grootendorst MR, Cariati M, Pinder SE, Kothari A, Douek M, Kovacs T, et al. Intraoperative assessment of tumor resection margins in breast-conserving surgery using
doi: 10.2967/jnumed.116.181032
pubmed: 27932562
olde Heuvel J, de Wit-van der Veen BJ, Vyas KN, Tuch DS, Grootendorst MR, Stokkel MPM, et al. Performance evaluation of Cerenkov luminescence imaging: a comparison of
Zhang Z, Cai M, Bao C, Hu Z, Tian J. Endoscopic Cerenkov luminescence imaging and image-guided tumor resection on hepatocellular carcinoma-bearing mouse models. Nanomed. 2019;17:62–70. https://doi.org/10.1016/j.nano.2018.12.017 .
doi: 10.1016/j.nano.2018.12.017
Chin PT, Welling MM, Meskers SC, Valdes Olmos RA, Tanke H, van Leeuwen FW. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence. Eur J Nucl Med Mol Imaging. 2013;40:1283–91. https://doi.org/10.1007/s00259-013-2408-9 .
doi: 10.1007/s00259-013-2408-9
pubmed: 23674205
Robertson R, Germanos MS, Li C, Mitchell GS, Cherry SR, Silva MD. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol. 2009;54:N355–65. https://doi.org/10.1088/0031-9155/54/16/n01 .
doi: 10.1088/0031-9155/54/16/n01
pubmed: 19636082
pmcid: 2765256
Pratt EC, Skubal M, Mc Larney B, Causa-Andrieu P, Das S, Sawan P, et al. Prospective testing of clinical Cerenkov luminescence imaging against standard-of-care nuclear imaging for tumour location. Nat Biomed Eng. 2022;6:559–68. https://doi.org/10.1038/s41551-022-00876-4 .
doi: 10.1038/s41551-022-00876-4
pubmed: 35411113
pmcid: 9149092
Brouwer OR, Buckle T, Bunschoten A, Kuil J, Vahrmeijer AL, Wendler T, et al. Image navigation as a means to expand the boundaries of fluorescence-guided surgery. Phys Med Biol. 2012;57:3123. https://doi.org/10.1088/0031-9155/57/10/3123 .
doi: 10.1088/0031-9155/57/10/3123
pubmed: 22547491
van Oosterom MN, van der Poel HG, Navab N, van de Velde CJ, van Leeuwen FW. Computer-assisted surgery: virtual-and augmented-reality displays for navigation during urological interventions. Curr Opin Urol. 2018;28:205–13. https://doi.org/10.1097/MOU.0000000000000478 .
doi: 10.1097/MOU.0000000000000478
pubmed: 29278582
Wendler T, Traub J, Ziegler SI, Navab N. Medical image computing and computer-assisted intervention – MICCAI 2006. In: Larsen R, Nielsen M, Sporring J, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006. Berlin, Heidelberg: Springer; 2006. p. 561–9.
doi: 10.1007/11866565_69
Vogel J, Lasser T, Gardiazabal J, Navab N. Trajectory optimization for intra-operative nuclear tomographic imaging. Med Image Anal. 2013;17:723–31. https://doi.org/10.1016/j.media.2013.04.009 .
doi: 10.1016/j.media.2013.04.009
pubmed: 23706624
Vetter C, Lasser T, Okur A, Navab N. 1D–3D registration for intra-operative nuclear imaging in radio-guided surgery. IEEE Trans Med Imaging. 2015;34:608–17. https://doi.org/10.1109/TMI.2014.2363551 .
doi: 10.1109/TMI.2014.2363551
pubmed: 25343756
Shakir DI, Okur A, Hart A, Matthies P, Ziegler SI, Essler M, et al. Towards intra-operative PET for head and neck cancer: lymph node localization using high-energy probes. In: Ayache N, Delingette, H., Golland, P., Mori, K., editor. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012. 2013/01/05 ed. Berlin, Heidelberg: Springer; 2012 430–7.
Costa PF, Püllen L, Sandach P, Moraitis A, Heß J, Tschirdewahn S, et al. Comparison of CLI with microPET/CT for the detection of PSMA foci in the prostatectomy specimen: a feasibility study. J Nucl Med. 2022;63(supplement 2):4002.
Krishnamoorthy S, Blankemeyer E, Mollet P, Surti S, Van Holen R, Karp JS. Performance evaluation of the MOLECUBES β-CUBE—a high spatial resolution and high sensitivity small animal PET scanner utilizing monolithic LYSO scintillation detectors. Phys Med Biol. 2018;63: 155013. https://doi.org/10.1088/1361-6560/aacec3 .
doi: 10.1088/1361-6560/aacec3
pubmed: 29938684
pmcid: 6145835
Debacker JM, Schelfhout V, Brochez L, Creytens D, D'Asseler Y, Deron P, et al. High-resolution
Okur A, Hennersperger C, Runyan B, Gardiazaball J, Keicher M, Paepke S, et al. FhSPECT-US guided needle biopsy of sentinel lymph nodes in the axilla: is it feasible? In: Golland P, Hata, N., Barillot, C., Hornegger, J., Howe, R., editor. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014. 2014/10/22 ed: Springer, Cham; 2014 577–84.
van den Berg NS, Simon H, Kleinjan GH, Engelen T, Bunschoten A, Welling MM, et al. First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery. Eur J Nucl Med Mol Imaging. 2015;42:1639–47. https://doi.org/10.1007/s00259-015-3109-3 .
doi: 10.1007/s00259-015-3109-3
pubmed: 26109329
Bugby SL, Lees JE, Perkins AC. Hybrid intraoperative imaging techniques in radioguided surgery: present clinical applications and future outlook. Clin Transl Imaging. 2017;5:323–41. https://doi.org/10.1007/s40336-017-0235-x .
doi: 10.1007/s40336-017-0235-x
pubmed: 28804703
pmcid: 5532406
Lees JE, Bugby SL, Alqahtani MS, Jambi LK, Dawood NS, McKnight WR, et al. A Multimodality hybrid gamma-optical camera for intraoperative imaging. Sensors. 2017;17:554. https://doi.org/10.3390/s17030554 .
doi: 10.3390/s17030554
pubmed: 28282957
pmcid: 5375840
Frisch B. Combining endoscopic ultrasound with Time-Of-Flight PET: the EndoTOFPET-US Project. Nucl Instrum Methods Phys Res A. 2013;732:577–80. https://doi.org/10.1016/j.nima.2013.05.027 .
doi: 10.1016/j.nima.2013.05.027
Esposito M, Busam B, Hennersperger C, Rackerseder J, Lu A, Navab N, et al. Cooperative robotic gamma imaging: enhancing US-guided needle biopsy. In: Navab N, Hornegger, J., Wells, W., Frangi, A., editor. Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015 MICCAI 2015: Springer, Cham; 2015 611–8.
Povoski SP, Chapman GJ, Murrey DA, Lee R, Martin EW, Hall NC. Intraoperative detection of
doi: 10.1186/1471-2407-13-98
pubmed: 23496877
pmcid: 3599348
Metser U, McVey R, Ferguson S, Halankar J, Bernardini M. Intraoperative lymph node evaluation using 18F-FDG and a hand-held gamma probe in endometrial cancer surgery–a pilot study. Eur J Gynaecol Oncol. 2016;37:362–6. https://doi.org/10.12892/ejgo3102.2016 .
doi: 10.12892/ejgo3102.2016
pubmed: 27352565
Thorek DLJ, Riedl C, Grimm J. Clinical Cerenkov Luminescence Imaging of
doi: 10.2967/jnumed.113.127266
Bertani E, Collamati F, Colandrea M, Faccini R, Fazio N, Ferrari ME, et al. First ex vivo results of β−-radioguided surgery in small intestine neuroendocrine tumors with
doi: 10.1089/cbr.2020.4487
pubmed: 33601932
Bahler CD, Green M, Hutchins GD, Cheng L, Magers MJ, Fletcher J, et al. Prostate specific membrane antigen targeted positron emission tomography of primary prostate cancer: assessing accuracy with whole mount pathology. Urol J. 2020;203:92–9. https://doi.org/10.1097/JU.0000000000000501 .
doi: 10.1097/JU.0000000000000501
Collamati F, Mirabelli R, Muraglia L, Luzzago S, Morganti S, Mistretta FA, et al. First in human validation of innovative beta radio guided surgery technique in prostate cancer. J Nucl Med. 2023;64(supplement 1):P1481.
Muraglia L, Mattana F, Travaini LL, Musi G, Bertani E, Renne G, et al. First live-experience session with PET/CT specimen imager: a pilot analysis in prostate cancer and neuroendocrine tumor. Biomedicines. 2023;11:645. https://doi.org/10.3390/biomedicines11020645 .
doi: 10.3390/biomedicines11020645
pubmed: 36831181
pmcid: 9953571
Van de Sande L, Menekse G. Peri-operative
doi: 10.1016/j.ejso.2021.12.116
Delacroix D, Guerre JP, Leblanc P, Hickman C. Radionuclide and radiation protection data handbook 2002. Radiat Prot Dosim. 2002;98:1–168. https://doi.org/10.1093/oxfordjournals.rpd.a006705 .
doi: 10.1093/oxfordjournals.rpd.a006705
Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Official Journal of the European Union. 2014;L 013:1–73.
Nalley C, Wiebeck K, Bartel TB, Bodenner D, Stack BC Jr. Intraoperative radiation exposure with the use of
doi: 10.1016/j.otohns.2009.11.005
pubmed: 20115989
Piert M, Burian M, Meisetschläger G, Stein HJ, Ziegler S, Nährig J, et al. Positron detection for the intraoperative localisation of cancer deposits. Eur J Nucl Med Mol Imaging. 2007;34:1534–44. https://doi.org/10.1007/s00259-007-0430-5 .
doi: 10.1007/s00259-007-0430-5
pubmed: 17431612
pmcid: 2562440
Costa PF, Fendler WP, Herrmann K, Sandach P, Grafe H, Grootendorst M, et al. Radiation protection and occupational exposure on [
doi: 10.2967/jnumed.121.263175
pubmed: 34916249
pmcid: 8882890
Camillocci ES, Schiariti M, Bocci V, Carollo A, Chiodi G, Colandrea M, et al. First ex vivo validation of a radioguided surgery technique with β-radiation. Phys Med. 2016;32:1139–44. https://doi.org/10.1016/j.ejmp.2016.08.018 .
doi: 10.1016/j.ejmp.2016.08.018
Russomando A, Schiariti M, Bocci V, Colandrea M, Collamati F, Cremonesi M, et al. The β-radio-guided surgery: method to estimate the minimum injectable activity from ex-vivo test. Phys Med. 2019;58:114–20. https://doi.org/10.1016/j.ejmp.2019.02.004 .
doi: 10.1016/j.ejmp.2019.02.004
pubmed: 30824142
Morche J, Renner D, Pietsch B, Kaiser L, Broenneke J, Gruber S, et al. International comparison of minimum volume standards for hospitals. Health Policy. 2018;122:1165–76. https://doi.org/10.1016/j.healthpol.2018.08.016 .
doi: 10.1016/j.healthpol.2018.08.016
pubmed: 30193981
Bauer H, Honselmann KC. Minimum volume standards in surgery-are we there yet. Visc Med. 2017;33:106–16. https://doi.org/10.1159/000456041 .
doi: 10.1159/000456041
pmcid: 5447172
(NAR) D-NR. Nuklearmedizinische Betriebe: Strahlenschutzberechnungen. Beuth Verlag GmbH; 2020.
Bunschoten A, van den Berg NS, Valdés Olmos RA, Blokland JAK, van Leeuwen FWB. Tracers applied in radioguided surgery. In: Herrmann K, Nieweg OE, Povoski SP, editors. Radioguided Surgery: Current Applications and Innovative Directions in Clinical Practice: Springer, Cham; 2016 75–101.
Vanhavere F, Carinou E, Donadille L, Ginjaume M, Jankowski J, Rimpler A, et al. An overview on extremity dosimetry in medical applications. Radiat Prot Dosimetry. 2008;129:350–5. https://doi.org/10.1093/rpd/ncn149 .
doi: 10.1093/rpd/ncn149
pubmed: 18448440
Saha S, Jacklin R, Siddika A, Clayton G, Dua S, Smith S. Safety of radioactive sentinel node biopsy for breast cancer and the pregnant surgeon - a review. Int J Surg. 2016;36:298–304. https://doi.org/10.1016/j.ijsu.2016.11.019 .
doi: 10.1016/j.ijsu.2016.11.019
pubmed: 27840311
Endo A. Operational quantities and new approach by ICRU. Ann ICRP. 2016;45:178–87. https://doi.org/10.1177/014664531562434 .
doi: 10.1177/014664531562434
Sundell-Bergman S, De la Cruz I, Avila R, Hasselblad S. A new approach to assessment and management of the impact from medical liquid radioactive waste. J Environ Radioact. 2008;99:1572–7. https://doi.org/10.1016/j.jenvrad.2007.12.005 .
doi: 10.1016/j.jenvrad.2007.12.005
pubmed: 18242799
Buck AK, Herrmann K, Stargardt T, Dechow T, Krause BJ, Schreyögg J. Economic evaluation of PET and PET/CT in oncology: evidence and methodologic approaches. J Nucl Med Technol. 2010;38:6–17. https://doi.org/10.2967/jnmt.108.059584 .
doi: 10.2967/jnmt.108.059584
pubmed: 20197541
Joint Federal Committee. Guideline of the Joint Federal Committee on outpatient specialist care in accordance with § 116b SGB V (Richtlinie des Gemeinsamen Bundesausschusses über die ambulante spezialfachärztliche Versorgung nach § 116b SGB V) - Attachements. https://www.g-ba.de/richtlinien/80/ . Accessed 5 May 2023.
National Association of Statutory Health Insurance Physicians (Kassenärztliche Bundesvereinigung). F-18-Fluorodesoxyglukose-PET/CT des Körperstammes. https://www.kbvde/tools/ebm/html/34701_202904386860173988269792.html . Accessed 5 May 2023.
Joint Federal Committee. Guideline of the Joint Federal Committee on outpatient specialist care in accordance with § 116b SGB V (Richtlinie des Gemeinsamen Bundesausschusses über die ambulante spezialfachärztliche Versorgung nach § 116b SGB V). BAnz AT 19.07.2013 B1: Bundesanzeiger; 2013.
National Association of Statutory Health Insurance Physicians (Kassenärztliche Bundesvereinigung). Zuschlag SPECT, Zwei- oder Mehrkopf. https://www.kbv.de/tools/ebm/html/17363_2904448811748695661888.html . Accessed 5 May 2023.
European Commission Directorate-General for Environment. Guidance on medical exposures in medical and biomedical research: Publications Office; 1999.