Effect of two irrigating solutions on antimicrobial activity and clinical and radiographic success after endodontic treatment in primary teeth: a randomized clinical trial.
Chlorhexidine
Pediatric dentistry
Pulpectomy
Randomized clinical trial
Real-time polymerase chain reaction
Sodium hypochlorite
Journal
Clinical oral investigations
ISSN: 1436-3771
Titre abrégé: Clin Oral Investig
Pays: Germany
ID NLM: 9707115
Informations de publication
Date de publication:
08 Jan 2024
08 Jan 2024
Historique:
received:
28
05
2023
accepted:
05
12
2023
medline:
8
1
2024
pubmed:
8
1
2024
entrez:
8
1
2024
Statut:
epublish
Résumé
This study evaluated the antimicrobial activity, clinical and radiographic outcome of pulpectomy in primary teeth using either 1% sodium hypochlorite (NaOCl) or 2% chlorhexidine (CHX) as irrigants. A randomized double-blind controlled clinical study in which primary teeth were allocated to 1% NaOCl (n = 20) and 2% CHX (n = 20) groups. Microbiological collections were performed before and after irrigation for agar culture and real-time polymerase chain reaction (qPCR). Clinical and radiographic success was assessed at different times. Data were submitted to descriptive analysis, chi-square, Mann-Whitney, and Wilcoxon tests (p < .05). For 1% NaOCl, the following clinical and radiographic success rates were observed: 7 days (93%/80%); 30 days, 3 and 6 months (100%). For 2% CHX: 7 days (73%/53%); 30 days (93%); 3 months (100%/93%); 6 months (100%) (p > .05). One percent NaOCl and 2% CHX effectively reduced total microorganisms (p < .05) but not mutans streptococci (p > .05). In qPCR analysis, the solutions promoted a reduction of total bacteria and Streptococcus mutans, and no difference was observed between times and groups (p > .05). One percent NaOCl and 2% CHX were effective for clinical and radiographic success and antimicrobial activity in primary teeth submitted to pulpectomy. Studying the antimicrobial activity and clinical and radiographic outcomes of pulpectomy in primary teeth using NaOCl and CHX as irrigants is clinically relevant because it provides information for optimizing treatment protocols and improving the quality of care for pediatric patients. It contributes to evidence-based practice and can potentially lead to better outcomes, reduced complications, and enhanced patient experiences.
Identifiants
pubmed: 38189975
doi: 10.1007/s00784-023-05398-0
pii: 10.1007/s00784-023-05398-0
doi:
Types de publication
Journal Article
Langues
eng
Pagination
81Subventions
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : Código de Financiamento 001
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJ, Marcenes W (2015) Global burden of untreated caries: a systematic review and metaregression. J Dent Res 94:650–658. https://doi.org/10.1177/0022034515573272
doi: 10.1177/0022034515573272
pubmed: 25740856
Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, Listl S, Celeste RK, Guarnizo-Herreño CC, Kearns C, Benzian H, Allison P, Watt RG (2019) Oral diseases: a global public health challenge. Lancet (London, England) 394:249–260. https://doi.org/10.1016/S0140-6736(19)31146-8
doi: 10.1016/S0140-6736(19)31146-8
pubmed: 31327369
Uribe SE, Innes N, Maldupa I (2021) The global prevalence of early childhood caries: a systematic review with meta-analysis using the WHO diagnostic criteria. Int J Paediatr Dent 31:817–830. https://doi.org/10.1111/ipd.12783
doi: 10.1111/ipd.12783
pubmed: 33735529
Nora ÂD, da Silva RC, de Oliveira RR, Soares FZM, Minatel Braga M, Lenzi TL (2018) Is caries associated with negative impact on oral health-related quality of life of pre-school children? A systematic review and meta-analysis. Pediatr Dent 40:403–411
pubmed: 31840639
Paula JS, Leite IC, Almeida AB, Ambrosano GM, Pereira AC, Mialhe FL (2012) The influence of oral health conditions, socioeconomic status and home environment factors on schoolchildren’s self-perception of quality of life. Health Qual Life Outcomes 10:6. https://doi.org/10.1186/1477-7525-10-6
doi: 10.1186/1477-7525-10-6
pubmed: 22244092
pmcid: 3285522
American Academy of Pediatric Dentistry (2023) Pulp therapy for primary and immature permanent teeth. The Reference Manual of Pediatric Dentistry. American Academy of Pediatric Dentistry, Chicago, Ill, pp 457–465. https://www.aapd.org/globalassets/media/policies_guidelines/bp_pulptherapy.pdf
Coll JA, Vargas K, Marghalani AA, Chen CY, AlShamali S, Dhar V, Crystal YO (2020) A systematic review and meta-analysis of nonvital pulp therapy for primary teeth. Pediatr Dent 42:256–461
pubmed: 32847665
Ahmed HM (2013) Anatomical challenges, electronic working length determination and current developments in root canal preparation of primary molar teeth. Int Endod J 46:1011–1022. https://doi.org/10.1111/iej.12134
doi: 10.1111/iej.12134
pubmed: 23711096
Farhin K, Viral PM, Thejokrishna P, Sajjad M (2015) Reduction in bacterial loading using MTAD as an irrigant in pulpectomized primary teeth. J Clin Pediatr Dent 39:100–104. https://doi.org/10.17796/jcpd.39.2.r1235327331r26hn
doi: 10.17796/jcpd.39.2.r1235327331r26hn
pubmed: 25951307
Haapasalo M, Shen Y, Qian W, Gao Y (2010) Irrigation in endodontics. Dent Clin North Am 54:291–312. https://doi.org/10.1016/j.cden.2009.12.001
doi: 10.1016/j.cden.2009.12.001
pubmed: 20433979
Tulsani SG, Chikkanarasaiah N, Bethur S (2014) An in vivo comparison of antimicrobial efficacy of sodium hypochlorite and Biopure MTAD™ against enterococcus faecalis in primary teeth: A qPCR study. J Clin Pediatr Dent 39:30–34. https://doi.org/10.17796/jcpd.39.1.c4q2155r16817219
doi: 10.17796/jcpd.39.1.c4q2155r16817219
pubmed: 25631723
Chalmers NI, Oh K, Hughes CV, Pradhan N, Kanasi E, Ehrlich Y, Dewhirst FE, Tanner AC (2015) Pulp and plaque microbiotas of children with severe early childhood caries. J Oral Microbiol 7:25951. https://doi.org/10.3402/jom.v7.25951
doi: 10.3402/jom.v7.25951
pubmed: 25651832
Rôças IN, Lima KC, Assunção IV, Gomes PN, Bracks IV, Siqueira JF Jr (2015) Advanced caries microbiota in teeth with irreversible pulpitis. J Endod 41:1450–1455. https://doi.org/10.1016/j.joen.2015.05.013
doi: 10.1016/j.joen.2015.05.013
pubmed: 26187422
Zehnder M (2006) Root canal irrigants. J Endod 32:389–398. https://doi.org/10.1016/j.joen.2005.09.014
doi: 10.1016/j.joen.2005.09.014
pubmed: 16631834
Pascon FM, Kantovitz KR, Sacramento PA, Nobre-dos-Santos M, Puppin-Rontani RM (2009) Effect of sodium hypochlorite on dentine mechanical properties. Rev J Dent 37:903–908. https://doi.org/10.1016/j.jdent.2009.07.004
doi: 10.1016/j.jdent.2009.07.004
Guivarc’h M, Ordioni U, Ahmed HM, Cohen S, Catherine JH, Bukiet F (2017) Sodium hypochlorite accident: a systematic review. J Endod 43:16–24. https://doi.org/10.1016/j.joen.2016.09.023
doi: 10.1016/j.joen.2016.09.023
pubmed: 27986099
Jeansonne MJ, White RR (1994) A comparison of 2.0% chlorhexidine gluconate and 5.25% sodium hypochlorite as antimicrobial endodontic irrigants. J Endod 20:276–278. https://doi.org/10.1016/s0099-2399(06)80815-0
doi: 10.1016/s0099-2399(06)80815-0
pubmed: 7931023
Gomes BP, Ferraz CC, Vianna ME, Berber VB, Teixeira FB, Souza-Filho FJ (2001) In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the elimination of Enterococcus faecalis. Int Endod J 34:424–428. https://doi.org/10.1046/j.1365-2591.2001.00410.x
doi: 10.1046/j.1365-2591.2001.00410.x
pubmed: 11556507
Carrilho MR, Carvalho RM, Sousa EN, Nicolau J, Breschi L, Mazzoni A, Tjäderhane L, Tay FR, Agee K, Pashley DH (2010) Substantivity of chlorhexidine to human dentin. Dent Mater 26:779–785. https://doi.org/10.1016/j.dental.2010.04.002
doi: 10.1016/j.dental.2010.04.002
pubmed: 20472282
pmcid: 2909541
Pozos-Guillen A, Garcia-Flores A, Esparza-Villalpando V, Garrocho-Rangel A (2016) Intracanal irrigants for pulpectomy in primary teeth: a systematic review and meta-analysis. Int J Paediatr Dent 26:412–425. https://doi.org/10.1111/ipd.12228
doi: 10.1111/ipd.12228
pubmed: 26898157
Ruksakiet K, Hanák L, Farkas N, Hegyi P, Sadaeng W, Czumbel LM, Sang-Ngoen T, Garami A, Mikó A, Varga G, Lohinai Z (2020) Antimicrobial efficacy of chlorhexidine and sodium hypochlorite in root canal disinfection: a systematic review and meta-analysis of randomized controlled trials. J Endod 46:1032-1041.e7. https://doi.org/10.1016/j.joen.2020.05.002
doi: 10.1016/j.joen.2020.05.002
pubmed: 32413440
Ruiz-Esparza CL, Garrocho-Rangel A, Gonzalez-Amaro AM, Flores-Reyes H, Pozos-Guillen AJ (2011) Reduction in bacterial loading using 2% chlorhexidine gluconate as an irrigant in pulpectomized primary teeth: a preliminary report. J Clin Pediatr Dent 35:265–270. https://doi.org/10.17796/jcpd.35.3.y052311j23617837
doi: 10.17796/jcpd.35.3.y052311j23617837
pubmed: 21678668
Valdez-Gonzalez C, Mendez-Gonzalez V, Torre-Delgadillo G, Flores-Reyes H, Gaitan-Fonseca C, Pozos-Guillen AJ (2012) Effectiveness of oxidative potential water as an irrigant in pulpectomized primary teeth. J Clin Pediatr Dent 37:31–35. https://doi.org/10.17796/jcpd.37.1.h62037241u458571
doi: 10.17796/jcpd.37.1.h62037241u458571
pubmed: 23342564
Gondim JO, Avaca-Crusca JS, Valentini SR, Zanelli CF, Spolidorio DM, Giro EM (2012) Effect of a calcium hydroxide/chlorhexidine paste as intracanal dressing in human primary teeth with necrotic pulp against Porphyromonas gingivalis and Enterococcus faecalis. Int J Paediatr Dent 22:116–124. https://doi.org/10.1111/j.1365-263X.2011.01174.x
doi: 10.1111/j.1365-263X.2011.01174.x
pubmed: 21883559
Barcelos R, Tannure PN, Gleiser R, Luiz RR, Primo LG (2012) The influence of smear layer removal on primary tooth pulpectomy outcome: a 24-month, double-blind, randomized, and controlled clinical trial evaluation. Int J Paediatr Dent 22:369–381. https://doi.org/10.1111/j.1365-263X.2011.01210.x
doi: 10.1111/j.1365-263X.2011.01210.x
pubmed: 22221174
Mortazavi M, Mesbahi M (2004) Comparison of zinc oxide and eugenol, and Vitapex for root canal treatment of necrotic primary teeth. Int J Paediatr Dent 14:417–424. https://doi.org/10.1111/j.1365-263X.2004.00544.x
doi: 10.1111/j.1365-263X.2004.00544.x
pubmed: 15525310
Estrela C, Estrela CR, Barbin EL, Spanó JC, Marchesan MA, Pécora JD (2002) Mechanism of action of sodium hypochlorite. Braz Dent J 13:113–117. https://doi.org/10.1590/s0103-64402002000200007
doi: 10.1590/s0103-64402002000200007
pubmed: 12238801
Louwakul P, Prucksathamrongkul W (2012) The effect of 2% chlorhexidine as root canal irrigant in pulpectomies of primary molars. Pediatr Dent 34:e192–e196
pubmed: 23265154
Melo MA, Rolim JP, Passos VF, Lima RA, Zanin IC, Codes BM, Rocha SS, Rodrigues LK (2015) Photodynamic antimicrobial chemotherapy and ultraconservative caries removal linked for management of deep caries lesions. Photodiagnosis Photodyn Ther 12:581–586. https://doi.org/10.1016/j.pdpdt.2015.09.005
doi: 10.1016/j.pdpdt.2015.09.005
pubmed: 26431977
Stuart CH, Schwartz SA, Beeson TJ, Owatz CB (2006) Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 32:93–98. https://doi.org/10.1016/j.joen.2005.10.049
doi: 10.1016/j.joen.2005.10.049
pubmed: 16427453