Implantation of Adipose-Derived Mesenchymal Stromal Cells (ADSCs)-Lining Prosthetic Graft Promotes Vascular Regeneration in Monkeys and Pigs.
3D printing hybrid vascular graft
Adipose-derived mesenchymal stromal cells (ADSCs)
Long-term animal post-surgery
Vessel regeneration
Journal
Tissue engineering and regenerative medicine
ISSN: 2212-5469
Titre abrégé: Tissue Eng Regen Med
Pays: Korea (South)
ID NLM: 101699923
Informations de publication
Date de publication:
08 Jan 2024
08 Jan 2024
Historique:
received:
14
09
2023
accepted:
09
11
2023
revised:
19
10
2023
medline:
8
1
2024
pubmed:
8
1
2024
entrez:
8
1
2024
Statut:
aheadofprint
Résumé
Current replacement procedures for stenosis or occluded arteries using prosthetic grafts have serious limitations in clinical applications, particularly, endothelialization of the luminal surface is a long-standing unresolved problem. We produced a cell-based hybrid vascular graft using a bioink engulfing adipose-derived mesenchymal stromal cells (ADSCs) and a 3D bioprinting process lining the ADSCs on the luminal surface of GORE-Tex grafts. The hybrid graft was implanted as an interposition conduit to replace a 3-cm-long segment of the infrarenal abdominal aorta in Rhesus monkeys. Complete endothelium layer and smooth muscle layer were fully developed within 21 days post-implantation, along with normalized collagen deposition and crosslinking in the regenerated vasculature in all monkeys. The regenerated blood vessels showed normal functionality for the longest observation of more than 1650 days. The same procedure was also conducted in miniature pigs for the interposition replacement of a 10-cm-long right iliac artery and showed the same long-term effective and safe outcome. This cell-based vascular graft is ready to undergo clinical trials for human patients.
Sections du résumé
BACKGROUND
BACKGROUND
Current replacement procedures for stenosis or occluded arteries using prosthetic grafts have serious limitations in clinical applications, particularly, endothelialization of the luminal surface is a long-standing unresolved problem.
METHOD
METHODS
We produced a cell-based hybrid vascular graft using a bioink engulfing adipose-derived mesenchymal stromal cells (ADSCs) and a 3D bioprinting process lining the ADSCs on the luminal surface of GORE-Tex grafts. The hybrid graft was implanted as an interposition conduit to replace a 3-cm-long segment of the infrarenal abdominal aorta in Rhesus monkeys.
RESULTS
RESULTS
Complete endothelium layer and smooth muscle layer were fully developed within 21 days post-implantation, along with normalized collagen deposition and crosslinking in the regenerated vasculature in all monkeys. The regenerated blood vessels showed normal functionality for the longest observation of more than 1650 days. The same procedure was also conducted in miniature pigs for the interposition replacement of a 10-cm-long right iliac artery and showed the same long-term effective and safe outcome.
CONCLUSION
CONCLUSIONS
This cell-based vascular graft is ready to undergo clinical trials for human patients.
Identifiants
pubmed: 38190095
doi: 10.1007/s13770-023-00615-z
pii: 10.1007/s13770-023-00615-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National High Technology Research and Development Program of China (863 project)
ID : 2015AA020305
Organisme : National Science Foundation of China
ID : 91439108
Informations de copyright
© 2024. The Author(s).
Références
Raffaele P, Gennaro G, Roxana M, Stephan W. Stable coronary artery disease: revascularisation and invasive strategies. The Lancet. 2015;386:702–13.
doi: 10.1016/S0140-6736(15)61220-X
Matthias T, Eva K, Petra K, Daniel W, Nilgün G, Susanne P, et al. Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. The Lancet. 2013;382:597–604.
doi: 10.1016/S0140-6736(13)61450-6
Josef K, Andreas B, Bernhard B, Lukas P, Olaf G, Gustav F. Outcome after interposition of vein grafts for arterial repair of extremity injuries in civilians. J Vasc Surg. 2014;59:1633–7.
doi: 10.1016/j.jvs.2014.01.006
Peter KH, Mary CP, Paul JZ, Asheesh B, Gilbert RU, Thomas WW, et al. Tissue loss, early primary graft occlusion, female gender, and a prohibitive failure rate of secondary infrainguinal arterial reconstruction. J Vasc Surg. 2002;35:902–9.
doi: 10.1067/mva.2002.123675
Pascual G, Martínez S, García-Honduvilla N, Corrales C, Bellón JM, Buján J. Long-term behaviour of cryopreserved arterial grafts versus prosthetic micrografts. Eur J Vasc Endovasc Surg. 2004;27:423–31.
doi: 10.1016/j.ejvs.2004.01.029
pubmed: 15015195
Lynch CR, Kondiah PPD, Choonara YE. Advanced strategies for tissue engineering in regenerative medicine: a biofabrication and biopolymer perspective. Molecules. 2021;26:2518.
doi: 10.3390/molecules26092518
pubmed: 33925886
pmcid: 8123515
Pashneh-Tala S, MacNeil S, Claeyssens F. The tissue-engineered vascular graft: past, present, and future. Tissue Eng Part B Rev. 2015;22:68–100.
doi: 10.1089/ten.teb.2015.0100
pmcid: 4753638
Nair P, Thottappillil N. Scaffolds in vascular regeneration: current status. Vasc Health Risk Manag. 2015;11:79–91.
doi: 10.2147/VHRM.S50536
pubmed: 25632236
pmcid: 4304530
Wu W, Allen RA, Wang Y. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat Med. 2012;18:1148–53.
doi: 10.1038/nm.2821
pubmed: 22729285
pmcid: 3438366
Wei H, Alejandro N, Lorenzo S, Yi H, Burhan G, Mihaela C, et al. Pericyte-based human tissue engineered vascular grafts. Biomaterials. 2010;31:8235–44.
doi: 10.1016/j.biomaterials.2010.07.034
de Valence S, Tille JC, Mugnai D, Mrowczynski W, Gurny R, Möller M, et al. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials. 2012;33:38–47.
doi: 10.1016/j.biomaterials.2011.09.024
pubmed: 21940044
Kei T, Hajime I, Koichiro H, Goro M, Toru K, Shigemitsu I, et al. A self-renewing, tissue-engineered vascular graft for arterial reconstruction. J Thorac Cardiovasc Surg. 2008;136:37–45.
doi: 10.1016/j.jtcvs.2007.06.039
Moore M, Tan R, Yang N, Rnjak-Kovacina J, Wise S. Bioengineering artificial blood vessels from natural materials. Trends Biotechnol. 2022;40:693–707.
doi: 10.1016/j.tibtech.2021.11.003
pubmed: 34887104
Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, et al. Mesenchymal stem versus stromal cells: international society for cell & gene therapy (ISCT
doi: 10.1016/j.jcyt.2019.08.002
pubmed: 31526643
Ryang HL, Byung CK, IkSoo C, Hanna K, Hee SC, Keun TS, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 2004;14:311–24.
doi: 10.1159/000080341
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.
doi: 10.1089/107632701300062859
pubmed: 11304456
Zuo X, Jiang X, Zhang Y, Huang Y, Wang N, Zhu P, et al. A clinical feasible stem cell encapsulation ensures an improved wound healing. Biomed Mater. 2023;18:025005.
doi: 10.1088/1748-605X/acb67a
Yang P, Han P, Hou J, Zhang L, Song H, Xie Y, et al. Electrocardiographic characterization of rhesus monkey model of ischemic myocardial infarction induced by left anterior descending artery ligation. Cardiovasc Toxicol. 2011;11:365–72.
doi: 10.1007/s12012-011-9129-8
pubmed: 21792668
Xie Y, Chen J, Han P, Yang P, Hou J, Kang YJ. Immunohistochemical detection of differentially localized up-regulation of lysyl oxidase and down-regulation of matrix metalloproteinase-1 in rhesus monkey model of chronic myocardial infarction. Exp Biol Med (Maywood). 2012;237:853–9.
doi: 10.1258/ebm.2012.012070
pubmed: 22829703
Sun X, Cai J, Fan X, Han P, Xie Y, Chen J, et al. Decreases in electrocardiographic R-wave amplitude and QT interval predict myocardial ischemic infarction in Rhesus monkeys with left anterior descending artery ligation. PLoS One. 2013;8: e71876.
doi: 10.1371/journal.pone.0071876
pubmed: 23967258
pmcid: 3742514
Zhao Y, Zhang S, Zhou J, Wang J, Zhen M, Liu Y, et al. The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials. 2010;31:296–307.
doi: 10.1016/j.biomaterials.2009.09.049
pubmed: 19819544
Jang EH, Kim JH, Lee JH, Kim DH, Youn YN. Enhanced biocompatibility of multilLayered, 3D bio-printed artificial vessels composed of autologous mesenchymal stem cells. Polymers (Basel). 2020;12:538.
doi: 10.3390/polym12030538
Ahn H, Ju YM, Takahashi H, Williams DF, Yoo JJ, Lee SJ, et al. Engineered small diameter vascular grafts by combining cell sheet engineering and electrospinning technology. Acta Biomater. 2015;16:14–22.
doi: 10.1016/j.actbio.2015.01.030
pubmed: 25641646
Krawiec JT, Liao HT, Kwan LL, D’Amore A, Weinbaum JS, Rubin JP, et al. Evaluation of the stromal vascular fraction of adipose tissue as the basis for a stem cell-based tissue-engineered vascular graft. J Vasc Surg. 2017;66:883–90.
doi: 10.1016/j.jvs.2016.09.034
pubmed: 28017585
Johnson R, Rafuse M, Selvakumar PP, Tan W. Effects of recipient age, heparin release and allogeneic bone marrow-derived stromal cells on vascular graft remodeling. Acta Biomater. 2021;125:172–82.
doi: 10.1016/j.actbio.2021.02.028
pmcid: 8189838
Xu Z, Zhang Q. Construction of a blood vessel wall with adipose-derived stem cell sheets in vitro. J Biomater Tissue Eng. 2021;11:1452–8.
doi: 10.1166/jbt.2021.2732
Yongzhen W, Yifan W, Runxia Z, Kaiyue Z, Adam CM, Deling K, et al. MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials. 2019;204:13–24.
doi: 10.1016/j.biomaterials.2019.01.049
Jeffrey TK, Justin SW, Han TL, Aneesh R, Dominic JP, Alexander DJ, et al. In vivo functional evaluation of tissue-engineered vascular grafts fabricated using human adipose-derived stem cells from high cardiovascular risk populations. Tissue Eng Part A. 2016;22:765–75.
doi: 10.1089/ten.tea.2015.0379
Jason DR, Rajendra SM, Matthew PB, Steven MJ, Lesley D, Deepak AR, et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci U S A. 2010;107:4669–74.
doi: 10.1073/pnas.0911465107
James PC, Dan TS, Anna LC, Agneta S. Immunomodulatory effects of adipose tissue-derived stem cells on elastin scaffold remodeling in diabetes. Tissue Eng Regen Med. 2016;13:701–12.
doi: 10.1007/s13770-016-0018-x
Craig KH, Yiqian Z, Guo YY, William LY, Benjamin SH, Karin W, et al. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci U S A. 2007;104:11915–20.
doi: 10.1073/pnas.0704581104