Immunophenotyping of hemocytes from infected Galleria mellonella larvae as an innovative tool for immune profiling, infection studies and drug screening.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
08 Jan 2024
08 Jan 2024
Historique:
received:
13
10
2023
accepted:
03
01
2024
medline:
9
1
2024
pubmed:
9
1
2024
entrez:
8
1
2024
Statut:
epublish
Résumé
In recent years, there has been a considerable increasing interest in the use of the greater wax moth Galleria mellonella as an animal model. In vivo pharmacological tests, concerning the efficacy and the toxicity of novel compounds are typically performed in mammalian models. However, the use of the latter is costly, laborious and requires ethical approval. In this context, G. mellonella larvae can be considered a valid option due to their greater ease of use and the absence of ethical rules. Furthermore, it has been demonstrated that the immune system of these invertebrates has similarity with the one of mammals, thus guaranteeing the reliability of this in vivo model, mainly in the microbiological field. To better develop the full potential of this model, we present a novel approach to characterize the hemocyte population from G. mellonella larvae and to highlight the immuno modulation upon infection and treatments. Our approach is based on the detection in isolated hemocytes from G. mellonella hemolymph of cell membrane markers typically expressed by human immune cells upon inflammation and infection, for instance CD14, CD44, CD80, CD163 and CD200. This method highlights the analogies between G. mellonella larvae and humans. Furthermore, we provide an innovative tool to perform pre-clinical evaluations of the efficacy of antimicrobial compounds in vivo to further proceed with clinical trials and support drug discovery campaigns.
Identifiants
pubmed: 38191588
doi: 10.1038/s41598-024-51316-z
pii: 10.1038/s41598-024-51316-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
759Subventions
Organisme : Ministero dell'Istruzione, dell'Università e della Ricerca
ID : BacCAD-FISR2019-04819
Organisme : Ministero dell'Istruzione, dell'Università e della Ricerca
ID : FAR 2020
Informations de copyright
© 2024. The Author(s).
Références
Singkum, P., Suwanmanee, S., Pumeesat, P. & Luplertlop, N. A powerful in vivo alternative model in scientific research: Galleria mellonella. Acta Microbiol. Immunol. Hung. 66, 31–55 (2019).
doi: 10.1556/030.66.2019.001
Wrońska, A. K., Kaczmarek, A., Sobich, J., Grzelak, S. & Boguś, M. I. Intracellular cytokine detection based on flow cytometry in hemocytes from Galleria mellonella larvae: A new protocol. PLoS One 17, e0274120 (2022).
doi: 10.1371/journal.pone.0274120
pmcid: 9521830
Serrano, I., Verdial, C., Tavares, L. & Oliveira, M. The virtuous Galleria mellonella model for scientific experimentation. Antibiotics 12, 505 (2023).
doi: 10.3390/antibiotics12030505
pmcid: 10044286
Hickin, M., Nadel, H., Schal, C. & Cohen, A. C. Optimization of a diet for the greater wax moth (Lepidoptera: Pyralidae) using full factorial and mixture design. J. Econ. Entomol. 114, 1091–1103 (2021).
doi: 10.1093/jee/toab039
Tsai, C. J. Y., Loh, J. M. S. & Proft, T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 7, 214–229 (2016).
doi: 10.1080/21505594.2015.1135289
pubmed: 26730990
pmcid: 4871635
Wright, C. L. & Kavanagh, O. Galleria mellonella as a novel in vivo model to screen natural product-derived modulators of innate immunity. Appl. Sci. 12, 6587 (2022).
doi: 10.3390/app12136587
Bugyna, L., Kendra, S. & Bujdáková, H. Galleria mellonella—a model for the study of aPDT—prospects and drawbacks. Microorganisms 11, 1455 (2023).
doi: 10.3390/microorganisms11061455
pubmed: 37374956
pmcid: 10301295
Kling, J. Get a look at Galleria. Lab Anim. (NY) 49, 65–67 (2020).
doi: 10.1038/s41684-020-0489-1
pubmed: 32099133
Vilcinskas, A. Mechanisms of transgenerational immune priming in insects. Dev. Comp. Immunol. 124, 104205 (2021).
doi: 10.1016/j.dci.2021.104205
pubmed: 34260954
Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).
doi: 10.1038/s41577-020-0285-6
pmcid: 7186935
Akanni, E. & Palini, A. Immunophenotyping of peripheral blood and bone marrow cells by flow cytometry. EJIFCC 17, 17 (2006).
pubmed: 29795718
pmcid: 5954430
Senior, N. J. & Titball, R. W. Isolation and primary culture of Galleria mellonella hemocytes for infection studies. F1000Research 9, 1392 (2020).
doi: 10.12688/f1000research.27504.1
Nakahara, Y. et al. Purification and characterization of silkworm hemocytes by flow cytometry. Dev. Comp. Immunol. 33, 439–448 (2009).
doi: 10.1016/j.dci.2008.09.005
pubmed: 18840462
Grande, R. et al. Temporal expression of agrB, cidA, and alsS in the early development of Staphylococcus aureus. Pathog. Dis. 70, 414–422 (2014).
Cheung, G. Y. C., Bae, J. S. & Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 12, 547–569 (2021).
doi: 10.1080/21505594.2021.1878688
pubmed: 33522395
pmcid: 7872022
Puca, V. et al. Microbial species isolated from infected wounds and antimicrobial resistance analysis: Data emerging from a three-years retrospective Study. Antibiotics 10, 1162 (2021).
doi: 10.3390/antibiotics10101162
pubmed: 34680743
pmcid: 8532735
Naeim, F., Rao, P. N., Song, S. X. & Phan, R. T. Atlas of Hematopathology Morphology, Immunophenotype, Cytogenetics, and Molecular Approaches (Academic Press, 2018).
McDonald, B. & Kubes, P. Interactions between CD44 And hyaluronan in leukocyte trafficking. Front. Immunol. 6, 132861 (2015).
doi: 10.3389/fimmu.2015.00068
McKenna, E. et al. Neutrophils: Need for standardized nomenclature. Front. Immunol. 12, 602963 (2021).
doi: 10.3389/fimmu.2021.602963
pmcid: 8081893
Zhu, Y. & Neelamegham, S. Knockout studies using CD34+ hematopoietic cells suggest that CD44 is a physiological human neutrophil e-selectin ligand. bioRxiv (2023).
Yilmaz, M., Demir, E., Firatli, Y., Firatli, E. & Gürsoy, U. K. Tissue levels of CD80, CD163 and CD206 and their ratios in periodontal and peri-implant health and disease. Curr. Issues Mol. Biol. 44, 4704–4713 (2022).
doi: 10.3390/cimb44100321
pubmed: 36286036
pmcid: 9600944
Koning, N. et al. Expression of the inhibitory CD200 receptor is associated with alternative macrophage activation. J. Innate Immun. 2, 195–200 (2009).
doi: 10.1159/000252803
pubmed: 20375636
Kotwica-Mojzych, K., Jodłowska-Jędrych, B. & Mojzych, M. CD200:CD200R interactions and their importance in immunoregulation. Int. J. Mol. Sci. 22, 1–21 (2021).
doi: 10.3390/ijms22041602
Zhu, B. et al. CD200 modulates S. aureus-induced innate immune responses through suppressing p38 signaling. Int. J. Mol. Sci. 20, 659 (2019).
doi: 10.3390/ijms20030659
pubmed: 30717437
pmcid: 6387079
Lange, A. et al. Galleria mellonella: A novel invertebrate model to distinguish intestinal symbionts from pathobionts. Front. Immunol. 9, 2114 (2018).
doi: 10.3389/fimmu.2018.02114
pubmed: 30283451
pmcid: 6156133
Gallorini, M. et al. Natural and synthetic xanthone derivatives counteract oxidative stress via Nrf2 modulation in inflamed human macrophages. Int. J. Mol. Sci. 23, 13319 (2022).
doi: 10.3390/ijms232113319
pubmed: 36362104
pmcid: 9659273
Dindo, M. L. & Francati, S. Soy flour versus skimmed milk powder in artificial diets for Galleria mellonella, a factitious host for Exorista larvarum. Bull. Insectol. 75, 273–280 (2022).
Campadelli, G. Effetti della bassa temperatura sulla coppia ospite-parassita Galleria mellonella L.-Pseudogonia rufifrons wied. Bull. insectology 45, 29–49 (1987).
Kwadha, C. A., Ong’Amo, G. O., Ndegwa, P. N., Raina, S. K. & Fombong, A. T. The biology and control of the greater wax moth, Galleria mellonella. Insects 8, 61 (2017).
doi: 10.3390/insects8020061
pubmed: 28598383
pmcid: 5492075
Desbois, A. P. & Coote, P. J. Wax moth larva (Galleria mellonella): An in vivo model for assessing the efficacy of antistaphylococcal agents. J. Antimicrob. Chemother. 66, 1785–1790 (2011).
doi: 10.1093/jac/dkr198
Entenza, J. M. et al. Rapid detection of Staphylococcus aureus strains with reduced susceptibility to vancomycin by isothermal microcalorimetry. J. Clin. Microbiol. 52, 180–186 (2014).
doi: 10.1128/JCM.01820-13
pmcid: 3911443
Puca, V. et al. The antibiofilm effect of a medical device containing TiAb on microorganisms associated with surgical site infection. Molecules 24, 2280 (2019).
doi: 10.3390/molecules24122280
pmcid: 6630542
García-Carnero, L. C. et al. Early virulence predictors during the Candida Species-Galleria mellonella Interaction. J. Fungi 6, 1–16 (2020).
doi: 10.3390/jof6030152