Immunophenotyping of hemocytes from infected Galleria mellonella larvae as an innovative tool for immune profiling, infection studies and drug screening.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
08 Jan 2024
Historique:
received: 13 10 2023
accepted: 03 01 2024
medline: 9 1 2024
pubmed: 9 1 2024
entrez: 8 1 2024
Statut: epublish

Résumé

In recent years, there has been a considerable increasing interest in the use of the greater wax moth Galleria mellonella as an animal model. In vivo pharmacological tests, concerning the efficacy and the toxicity of novel compounds are typically performed in mammalian models. However, the use of the latter is costly, laborious and requires ethical approval. In this context, G. mellonella larvae can be considered a valid option due to their greater ease of use and the absence of ethical rules. Furthermore, it has been demonstrated that the immune system of these invertebrates has similarity with the one of mammals, thus guaranteeing the reliability of this in vivo model, mainly in the microbiological field. To better develop the full potential of this model, we present a novel approach to characterize the hemocyte population from G. mellonella larvae and to highlight the immuno modulation upon infection and treatments. Our approach is based on the detection in isolated hemocytes from G. mellonella hemolymph of cell membrane markers typically expressed by human immune cells upon inflammation and infection, for instance CD14, CD44, CD80, CD163 and CD200. This method highlights the analogies between G. mellonella larvae and humans. Furthermore, we provide an innovative tool to perform pre-clinical evaluations of the efficacy of antimicrobial compounds in vivo to further proceed with clinical trials and support drug discovery campaigns.

Identifiants

pubmed: 38191588
doi: 10.1038/s41598-024-51316-z
pii: 10.1038/s41598-024-51316-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

759

Subventions

Organisme : Ministero dell'Istruzione, dell'Università e della Ricerca
ID : BacCAD-FISR2019-04819
Organisme : Ministero dell'Istruzione, dell'Università e della Ricerca
ID : FAR 2020

Informations de copyright

© 2024. The Author(s).

Références

Singkum, P., Suwanmanee, S., Pumeesat, P. & Luplertlop, N. A powerful in vivo alternative model in scientific research: Galleria mellonella. Acta Microbiol. Immunol. Hung. 66, 31–55 (2019).
doi: 10.1556/030.66.2019.001
Wrońska, A. K., Kaczmarek, A., Sobich, J., Grzelak, S. & Boguś, M. I. Intracellular cytokine detection based on flow cytometry in hemocytes from Galleria mellonella larvae: A new protocol. PLoS One 17, e0274120 (2022).
doi: 10.1371/journal.pone.0274120 pmcid: 9521830
Serrano, I., Verdial, C., Tavares, L. & Oliveira, M. The virtuous Galleria mellonella model for scientific experimentation. Antibiotics 12, 505 (2023).
doi: 10.3390/antibiotics12030505 pmcid: 10044286
Hickin, M., Nadel, H., Schal, C. & Cohen, A. C. Optimization of a diet for the greater wax moth (Lepidoptera: Pyralidae) using full factorial and mixture design. J. Econ. Entomol. 114, 1091–1103 (2021).
doi: 10.1093/jee/toab039
Tsai, C. J. Y., Loh, J. M. S. & Proft, T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 7, 214–229 (2016).
doi: 10.1080/21505594.2015.1135289 pubmed: 26730990 pmcid: 4871635
Wright, C. L. & Kavanagh, O. Galleria mellonella as a novel in vivo model to screen natural product-derived modulators of innate immunity. Appl. Sci. 12, 6587 (2022).
doi: 10.3390/app12136587
Bugyna, L., Kendra, S. & Bujdáková, H. Galleria mellonella—a model for the study of aPDT—prospects and drawbacks. Microorganisms 11, 1455 (2023).
doi: 10.3390/microorganisms11061455 pubmed: 37374956 pmcid: 10301295
Kling, J. Get a look at Galleria. Lab Anim. (NY) 49, 65–67 (2020).
doi: 10.1038/s41684-020-0489-1 pubmed: 32099133
Vilcinskas, A. Mechanisms of transgenerational immune priming in insects. Dev. Comp. Immunol. 124, 104205 (2021).
doi: 10.1016/j.dci.2021.104205 pubmed: 34260954
Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).
doi: 10.1038/s41577-020-0285-6 pmcid: 7186935
Akanni, E. & Palini, A. Immunophenotyping of peripheral blood and bone marrow cells by flow cytometry. EJIFCC 17, 17 (2006).
pubmed: 29795718 pmcid: 5954430
Senior, N. J. & Titball, R. W. Isolation and primary culture of Galleria mellonella hemocytes for infection studies. F1000Research 9, 1392 (2020).
doi: 10.12688/f1000research.27504.1
Nakahara, Y. et al. Purification and characterization of silkworm hemocytes by flow cytometry. Dev. Comp. Immunol. 33, 439–448 (2009).
doi: 10.1016/j.dci.2008.09.005 pubmed: 18840462
Grande, R. et al. Temporal expression of agrB, cidA, and alsS in the early development of Staphylococcus aureus. Pathog. Dis. 70, 414–422 (2014).
Cheung, G. Y. C., Bae, J. S. & Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 12, 547–569 (2021).
doi: 10.1080/21505594.2021.1878688 pubmed: 33522395 pmcid: 7872022
Puca, V. et al. Microbial species isolated from infected wounds and antimicrobial resistance analysis: Data emerging from a three-years retrospective Study. Antibiotics 10, 1162 (2021).
doi: 10.3390/antibiotics10101162 pubmed: 34680743 pmcid: 8532735
Naeim, F., Rao, P. N., Song, S. X. & Phan, R. T. Atlas of Hematopathology Morphology, Immunophenotype, Cytogenetics, and Molecular Approaches (Academic Press, 2018).
McDonald, B. & Kubes, P. Interactions between CD44 And hyaluronan in leukocyte trafficking. Front. Immunol. 6, 132861 (2015).
doi: 10.3389/fimmu.2015.00068
McKenna, E. et al. Neutrophils: Need for standardized nomenclature. Front. Immunol. 12, 602963 (2021).
doi: 10.3389/fimmu.2021.602963 pmcid: 8081893
Zhu, Y. & Neelamegham, S. Knockout studies using CD34+ hematopoietic cells suggest that CD44 is a physiological human neutrophil e-selectin ligand. bioRxiv (2023).
Yilmaz, M., Demir, E., Firatli, Y., Firatli, E. & Gürsoy, U. K. Tissue levels of CD80, CD163 and CD206 and their ratios in periodontal and peri-implant health and disease. Curr. Issues Mol. Biol. 44, 4704–4713 (2022).
doi: 10.3390/cimb44100321 pubmed: 36286036 pmcid: 9600944
Koning, N. et al. Expression of the inhibitory CD200 receptor is associated with alternative macrophage activation. J. Innate Immun. 2, 195–200 (2009).
doi: 10.1159/000252803 pubmed: 20375636
Kotwica-Mojzych, K., Jodłowska-Jędrych, B. & Mojzych, M. CD200:CD200R interactions and their importance in immunoregulation. Int. J. Mol. Sci. 22, 1–21 (2021).
doi: 10.3390/ijms22041602
Zhu, B. et al. CD200 modulates S. aureus-induced innate immune responses through suppressing p38 signaling. Int. J. Mol. Sci. 20, 659 (2019).
doi: 10.3390/ijms20030659 pubmed: 30717437 pmcid: 6387079
Lange, A. et al. Galleria mellonella: A novel invertebrate model to distinguish intestinal symbionts from pathobionts. Front. Immunol. 9, 2114 (2018).
doi: 10.3389/fimmu.2018.02114 pubmed: 30283451 pmcid: 6156133
Gallorini, M. et al. Natural and synthetic xanthone derivatives counteract oxidative stress via Nrf2 modulation in inflamed human macrophages. Int. J. Mol. Sci. 23, 13319 (2022).
doi: 10.3390/ijms232113319 pubmed: 36362104 pmcid: 9659273
Dindo, M. L. & Francati, S. Soy flour versus skimmed milk powder in artificial diets for Galleria mellonella, a factitious host for Exorista larvarum. Bull. Insectol. 75, 273–280 (2022).
Campadelli, G. Effetti della bassa temperatura sulla coppia ospite-parassita Galleria mellonella L.-Pseudogonia rufifrons wied. Bull. insectology 45, 29–49 (1987).
Kwadha, C. A., Ong’Amo, G. O., Ndegwa, P. N., Raina, S. K. & Fombong, A. T. The biology and control of the greater wax moth, Galleria mellonella. Insects 8, 61 (2017).
doi: 10.3390/insects8020061 pubmed: 28598383 pmcid: 5492075
Desbois, A. P. & Coote, P. J. Wax moth larva (Galleria mellonella): An in vivo model for assessing the efficacy of antistaphylococcal agents. J. Antimicrob. Chemother. 66, 1785–1790 (2011).
doi: 10.1093/jac/dkr198
Entenza, J. M. et al. Rapid detection of Staphylococcus aureus strains with reduced susceptibility to vancomycin by isothermal microcalorimetry. J. Clin. Microbiol. 52, 180–186 (2014).
doi: 10.1128/JCM.01820-13 pmcid: 3911443
Puca, V. et al. The antibiofilm effect of a medical device containing TiAb on microorganisms associated with surgical site infection. Molecules 24, 2280 (2019).
doi: 10.3390/molecules24122280 pmcid: 6630542
García-Carnero, L. C. et al. Early virulence predictors during the Candida Species-Galleria mellonella Interaction. J. Fungi 6, 1–16 (2020).
doi: 10.3390/jof6030152

Auteurs

Marialucia Gallorini (M)

Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy. marialucia.gallorini@unich.it.

Beatrice Marinacci (B)

Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.
Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.

Benedetta Pellegrini (B)

Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.

Amelia Cataldi (A)

Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.
UdA TechLab, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.

Maria Luisa Dindo (ML)

Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy.

Simone Carradori (S)

Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.

Rossella Grande (R)

Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy. rossella.grande@unich.it.

Classifications MeSH