Photo-Controlled Calcium Overload from Endogenous Sources for Tumor Therapy.
nitric oxide * calcium ion overload * mesoporous silica nanoparticles * tumor therapy * TRPA1 channel
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
08 Jan 2024
08 Jan 2024
Historique:
revised:
31
12
2023
received:
18
11
2023
accepted:
08
01
2024
medline:
9
1
2024
pubmed:
9
1
2024
entrez:
9
1
2024
Statut:
aheadofprint
Résumé
Designing reactive calcium-based nanogenerators to produce excess calcium ions (Ca2+) in tumor cells is an attractive tumor treatment method. However, nanogenerators that introduce exogenous Ca2+ are either overactive incapable of on-demand release, or excessively inert incapable of an overload of calcium rapidly. Herein, inspired by inherently diverse Ca2+-regulating channels, a photo-controlled Ca2+ nanomodulator that fully utilizes endogenous Ca2+ from dual sources was designed to achieve Ca2+ overload in tumor cells. Specifically, mesoporous silica nanoparticles were used to co-load bifunctional indocyanine green as a photodynamic/photothermal agent and a thermal-sensitive nitric oxide (NO) donor (BNN-6). Thereafter, they were coated with hyaluronic acid, which served as a tumor cell-targeting unit and a gatekeeper. Under near-infrared light irradiation, the Ca2+ nanomodulator can generate reactive oxygen species that stimulate the transient receptor potential ankyrin subtype 1 channel to realize Ca2+ influx from extracellular environments. Simultaneously, the converted heat can induce BNN-6 decomposition to generate NO, which would open the ryanodine receptor channel in the endoplasmic reticulum and allow stored Ca2+ to leak. Both in vitro and in vivo experiments demonstrated that the combination of photo-controlled Ca2+ influx and release could enable Ca2+ overload in the cytoplasm and efficiently inhibit tumor growth.
Identifiants
pubmed: 38192016
doi: 10.1002/anie.202317578
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202317578Informations de copyright
© 2024 Wiley-VCH GmbH.