Evaluation of selected tropical marine microalgal cultures for use in biophotovoltaic platforms.
Algal biotechnology
Bioelectricity
Biophotovoltaic platform
Marine microalgae
Renewable energy
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
Dec 2024
Dec 2024
Historique:
received:
17
08
2023
accepted:
17
11
2023
revised:
10
11
2023
medline:
9
1
2024
pubmed:
9
1
2024
entrez:
9
1
2024
Statut:
ppublish
Résumé
In this study, the bioelectrical power generation potential of four tropical marine microalgal strains native to Malaysia was investigated using BPV platforms. Chlorella UMACC 258 produced the highest power density (0.108 mW m
Identifiants
pubmed: 38194143
doi: 10.1007/s00253-023-12951-0
pii: 10.1007/s00253-023-12951-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1-14Subventions
Organisme : Higher Education Malaysia via Fundamental Research Grant Scheme (FRGS)
ID : [FRGS/1/2022/TK08/UM/03/1][FP098-2022]
Organisme : funding of King Khalid University through Research Center for Advanced Materials Science (RCAMS)
ID : RCAMS/KKU/001-23
Organisme : UCSI Research Grant
ID : REIG-FAS-2022/048
Informations de copyright
© 2024. The Author(s).
Références
Adams S, Nsiah C (2019) Reducing carbon dioxide emissions; does renewable energy matter? Sci Total Environ 693:133288. https://doi.org/10.1016/j.scitotenv.2019.07.094
doi: 10.1016/j.scitotenv.2019.07.094
pubmed: 31357035
Anderson TF (1951) Techniques for the preservation of three-dimensional structure in preparing specimens for the electron microscope. Trans N Y Acad Sci 13:130–134. https://doi.org/10.1111/j.2164-0947.1951.tb01007.x
doi: 10.1111/j.2164-0947.1951.tb01007.x
Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435. https://doi.org/10.1083/jcb.58.2.419
doi: 10.1083/jcb.58.2.419
pubmed: 4199659
pmcid: 2109051
Bombelli P, McCormick A, Bradley R, Yunus K, Philips J, Anderson X, Cruz S, Thorne R, Gu N, Smith A, Bendall D, Howe C, Peter L, Fisher A (2011) Harnessing solar energy by bio-photovoltaic (BPV) devices. Commun Agric Appl Biol Sci 76:89–91
pubmed: 21404943
Boulay C, Abasova L, Six C, Vass I, Kirilovsky D (2008) Occurrence and function of the orange carotenoid protein in photoprotective mechanisms in various cyanobacteria. Biochim Biophys Acta - Bioenerg 1777:1344–1354. https://doi.org/10.1016/j.bbabio.2008.07.002
doi: 10.1016/j.bbabio.2008.07.002
Busalmen JP, de Sánchez SR (2005) Electrochemical polarization-induced changes in the growth of individual cells and biofilms of Pseudomonas fluorescens (ATCC 17552). Appl Environ Microbiol 71:6235–6240. https://doi.org/10.1128/AEM.71.10.6235
doi: 10.1128/AEM.71.10.6235
pubmed: 16204543
pmcid: 1265957
Campbell D, Hurry V, Clarke AK, Gustafsson P, Öquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667–683. https://doi.org/10.1128/mmbr.62.3.667-683.1998
doi: 10.1128/mmbr.62.3.667-683.1998
pubmed: 9729605
pmcid: 98930
Christaki E, Bonos E, Florou-Paneri P (2015) Innovative microalgae pigments as functional ingredients in nutrition. In: Kim S-K (ed) Handbook of marine microalgae: Biotechnology advances. Academic Press, pp 223–243
Ciniciato GPMK, Ng F-L, Phang S-M, Jaafar MM, Fisher AC, Yunus K, Periasamy V (2016) Investigating the association between photosynthetic efficiency and generation of biophotoelectricity in autotrophic microbial fuel cells. Sci Rep 6:31193. https://doi.org/10.1038/srep31193
doi: 10.1038/srep31193
pubmed: 27502051
pmcid: 4977534
Demirbas A, Demirbas MF (2010) Algae energy, 1st edn. Springer, New York
doi: 10.1007/978-1-84996-050-2
Garcia-Mendoza E, Matthijs HCP, Schubert H, Mur LR (2002) Non-photochemical quenching of chlorophyll fluorescence in Chlorella fusca acclimated to constant and dynamic light conditions. Photosynth Res 74:303–315. https://doi.org/10.1023/A:1021230601077
doi: 10.1023/A:1021230601077
pubmed: 16245141
Gelzinis A, Butkus V, Songaila E, Augulis R, Gall A, Büchel C, Robert B, Abramavicius D, Zigmantas D, Valkunas L (2015) Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex. Biochim Biophys Acta 1847:241–247. https://doi.org/10.1016/j.bbabio.2014.11.004
doi: 10.1016/j.bbabio.2014.11.004
pubmed: 25445318
Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta - Gen Subj 990:87–92. https://doi.org/10.1016/S0304-4165(89)80016-9
doi: 10.1016/S0304-4165(89)80016-9
Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24:38–50. https://doi.org/10.1016/j.esr.2019.01.006
doi: 10.1016/j.esr.2019.01.006
Henríquez V, Escobar C, Galarza J, Gimpel J (2016) Carotenoids in microalgae. In: Stange C (ed) Carotenoids in nature. Springer, Cham, pp 377–414
Hosikian A, Lim S, Halim R, Danquah MK (2010) Chlorophyll extraction from microalgae: a review on the process engineering aspects. Int J Chem Eng 2010:1–11. https://doi.org/10.1155/2010/391632
doi: 10.1155/2010/391632
International Energy Agency (2021) Global energy review: CO2 emissions in 2020. https://www.iea.org/articles/global-energy-review-co2-emissions-in-2020
Jaswal V, Rani G, Yogalakshmi KN (2020) Photosynthetic microbial fuel cells: from fundamental to potential applications. In: Kumar P, Kuppam C (eds) Bioelectrochemical systems. Springer, Singapore, pp 1–19
Kammen DM (2006) The rise of renewable energy. Sci Am 295:84–93. https://doi.org/10.1038/scientificamerican0906-84
doi: 10.1038/scientificamerican0906-84
pubmed: 16925040
Karthikeyan C, Raj Kumar T, Pannipara M, Al-Sehemi AG, Senthilkumar N, Angelaalincy MJ, Varalakshmi P, Phang SM, Periasamy V, Gnana Kumar G (2019) Ruthenium oxide/tungsten oxide composite nanofibers as anode catalysts for the green energy generation of Chlorella vulgaris mediated biophotovoltaic cells. Environ Prog Sustain Energy 38:e13262. https://doi.org/10.1002/ep.13262
doi: 10.1002/ep.13262
Kirilovsky D (2015) Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. Photosynth Res 126:3–17. https://doi.org/10.1007/s11120-014-0031-7
doi: 10.1007/s11120-014-0031-7
pubmed: 25139327
Kusmayadi A, Leong YK, Yen HW, Huang CY, Di DC, Chang JS (2020) Microalgae-microbial fuel cell (mMFC): an integrated process for electricity generation, wastewater treatment, CO
doi: 10.1002/er.5531
Lavaud J (2007) Fast regulation of photosynthesis in diatoms: mechanisms, evolution and ecophysiology. Funct Plant Sci Biotechnol 1:267–287
Lavaud J, Goss R (2014) The peculiar features of non-photochemical fluorescence quenching in diatoms and brown algae. In: Demmig-Adams B, Garab G, Adams W III, Govindjee (eds) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Springer, Dordrecht, pp 421–443
doi: 10.1007/978-94-017-9032-1_20
Lavaud J, Rousseau B, van Gorkom HJ, Etienne AL (2002) Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol 129:1398–1406. https://doi.org/10.1104/pp.002014
doi: 10.1104/pp.002014
pubmed: 12114593
pmcid: 166533
Lee D, Chang J, Lai J (2015) Microalgae – microbial fuel cell: a mini review. Bioresour Technol 198:891–895. https://doi.org/10.1016/j.biortech.2015.09.061
doi: 10.1016/j.biortech.2015.09.061
pubmed: 26431899
Lim YK, Phang SM, Sturges WT, Malin G, Abdul Rahman N (2018) Emission of short-lived halocarbons by three common tropical marine microalgae during batch culture. J Appl Phycol 30:341–353. https://doi.org/10.1007/s10811-017-1250-z
doi: 10.1007/s10811-017-1250-z
Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192. https://doi.org/10.1021/es0605016
doi: 10.1021/es0605016
pubmed: 16999087
Malapascua JRF, Jerez CG, Sergejevová M, Figueroa FL, Masojídek J (2014) Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques. Aquat Biol 22:123–140. https://doi.org/10.3354/ab00597
doi: 10.3354/ab00597
Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. https://doi.org/10.1093/jexbot/51.345.659
doi: 10.1093/jexbot/51.345.659
pubmed: 10938857
Mccormick AJ, Bombelli P, Scott AM, Philips AJ, Smith AG, Fisher AC, Howe CJ (2011) Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy Environ Sci 4:4699–4709. https://doi.org/10.1039/c1ee01965a
doi: 10.1039/c1ee01965a
McMinn A, Martin A, Ryan K (2010) Phytoplankton and sea ice algal biomass and physiology during the transition between winter and spring (McMurdo Sound, Antarctica). Polar Biol 33:1547–1556. https://doi.org/10.1007/s00300-010-0844-6
doi: 10.1007/s00300-010-0844-6
Moline MA (1998) Photoadaptive response during the development of a coustal Antarctic diatom bloom and relationship to water column stability. Limnol Oceanogr 43:146–153. https://doi.org/10.4319/lo.1998.43.1.0146
doi: 10.4319/lo.1998.43.1.0146
Ng F-L, Jaafar MM, Phang S-M, Chan Z, Salleh NA, Azmi SZ, Yunus K, Fisher AC, Periasamy V (2014a) Reduced graphene oxide anodes for potential application in algae biophotovoltaic platforms. Sci Rep 4:7562. https://doi.org/10.1038/srep07562
doi: 10.1038/srep07562
pubmed: 25531093
pmcid: 4273602
Ng F-L, Phang S-M, Periasamy V, Yunus K, Fisher AC (2014b) Evaluation of algal biofilms on indium tin oxide (ITO) for use in biophotovoltaic platforms based on photosynthetic performance. PLoS ONE 9:e97643. https://doi.org/10.1371/journal.pone.0097643
doi: 10.1371/journal.pone.0097643
pubmed: 24874081
pmcid: 4038552
Ng F, Phang S, Periasamy V, Yunus K, Fisher AC (2017) Enhancement of power output by using alginate immobilized algae in biophotovoltaic devices. Sci Rep 7:16237. https://doi.org/10.1038/s41598-017-16530-y
doi: 10.1038/s41598-017-16530-y
pubmed: 29176639
pmcid: 5701143
Ng F, Phang S, Periasamy V, Beardall J, Yunus K, Fisher AC (2018) Algal biophotovoltaic (BPV) device for generation of bioelectricity using Synechococcus elongatus (Cyanophyta). J Appl Phycol 30:2981–2988. https://doi.org/10.1007/s10811-018-1515-1
doi: 10.1007/s10811-018-1515-1
Papageorgiou GC, Tsimilli-Michael M, Stamatakis K (2007) The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth Res 94:275–290. https://doi.org/10.1007/s11120-007-9193-x
doi: 10.1007/s11120-007-9193-x
pubmed: 17665151
Pathak J, Ahmed H, Singh PR, Singh SP, Häder DP, Sinha RP (2019) Mechanisms of photoprotection in Cyanobacteria. Elsevier Inc., Cambridge, Massachussets, USA
Quaas T, Berteotti S, Ballottari M, Flieger K, Bassi R, Wilhelm C, Goss R (2015) Non-photochemical quenching and xanthophyll cycle activities in six green algal species suggest mechanistic differences in the process of excess energy dissipation. J Plant Physiol 172:92–103. https://doi.org/10.1016/j.jplph.2014.07.023
doi: 10.1016/j.jplph.2014.07.023
pubmed: 25240793
Reeves S, McMinn A, Martin A (2011) The effect of prolonged darkness on the growth, recovery and survival of Antarctic sea ice diatoms. Polar Biol 34:1019–1032. https://doi.org/10.1007/s00300-011-0961-x
doi: 10.1007/s00300-011-0961-x
Ruban A, Lavaud J, Rousseau B, Guglielmi G, Horton P, Etienne A-L (2004) The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Photosynth Res 82:165–175. https://doi.org/10.1007/s11120-004-1456-1
doi: 10.1007/s11120-004-1456-1
pubmed: 16151872
Saifullah AZA, Karim A, Ahmad-yazid A (2014) Microalgae: an alternative source of renewable energy. Am J Eng Res 3:330–338
Schuurmans RM, Van Alphen P, Schuurmans JM, Matthijs HCP, Hellingwerf KJ (2015) Comparison of the photosynthetic yield of cyanobacteria and green algae: different methods give different answers. PLoS ONE 10:1–17. https://doi.org/10.1371/journal.pone.0139061
doi: 10.1371/journal.pone.0139061
Śliwińska-Wilczewska S, Konarzewska Z, Wiśniewska K, Konik M (2020) Photosynthetic pigments changes of three phenotypes of picocyanobacteria Synechococcus sp. under different light and temperature conditions. Cells 9:1–19. https://doi.org/10.3390/cells9092030
doi: 10.3390/cells9092030
Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa
Tee J-Y, Ng F-L, Keng FS-L, Kumar GG, Phang S-M (2023) Microbial reduction of graphene oxide and its application in microbial fuel cells and biophotovoltaics. Front Mater Sci 17:230642. https://doi.org/10.1007/s11706-023-0642-z
doi: 10.1007/s11706-023-0642-z
Thong C-H, Phang S-M, Ng F-L, Periasamy V, Ling T-C, Yunus K, Fisher AC (2019) Effect of different irradiance levels on bioelectricity generation from algal biophotovoltaic (BPV) devices. Energy Sci Eng 7:2086–2097. https://doi.org/10.1002/ese3.414
doi: 10.1002/ese3.414
Thong C-H, Ng F-L, Periasamy V, Basirun WJ, Kumar GG, Phang S-M (2023) Sustained power output from an algal biophotovoltaic (BPV) platform using selected marine and freshwater microalgae. J Appl Phycol 35:131–143. https://doi.org/10.1007/s10811-022-02879-9
doi: 10.1007/s10811-022-02879-9
Tschörtner J, Lai B, Krömer JO (2019) Biophotovoltaics: green power generation from sunlight and water. Front Microbiol 10:866. https://doi.org/10.3389/fmicb.2019.00866
doi: 10.3389/fmicb.2019.00866
pubmed: 31114551
pmcid: 6503001
Tyystjärvi E (2008) Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster. Coord Chem Rev 252:361–376. https://doi.org/10.1016/j.ccr.2007.08.021
doi: 10.1016/j.ccr.2007.08.021
Vass I, Aro E-M (2007) Photoinhibition of photosynthetic electron transport. In: Renger G (ed) Primary Processes of Photosynthesis, Part 1: Principles and Apparatus. RSC Publishing, pp 393–411
Venkata Mohan S, Srikanth S, Chiranjeevi P, Arora S, Chandra R (2014) Algal biocathode for in situ terminal electron acceptor (TEA) production: synergetic association of bacteria-microalgae metabolism for the functioning of biofuel cell. Bioresour Technol 166:566–574. https://doi.org/10.1016/j.biortech.2014.05.081
doi: 10.1016/j.biortech.2014.05.081
pubmed: 24953968
Wilson A, Punginelli C, Gall A, Bonetti C, Alexandre M, Routaboul J-M, Kerfeld CA, van Grondelle R, Robert B, Kennis JTM, Kirilovsky D (2008) A photoactive carotenoid protein acting as light intensity sensor. PNAS 105:12075–12080. https://doi.org/10.1073/pnas.0804636105
doi: 10.1073/pnas.0804636105
pubmed: 18687902
pmcid: 2575289
Wu Y, Guan K, Wang Z, Xu B, Zhao F (2013) Isolation, identification and characterization of an electrogenic microalgae strain. PLoS ONE 8:e73442. https://doi.org/10.1371/journal.pone.0073442
doi: 10.1371/journal.pone.0073442
pubmed: 24019922
pmcid: 3760914