Chitinases as a potential diagnostic and prognostic biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis.

Amyotrophic lateral sclerosis Biomarker Blood CHI3L1 CHI3L2 CHIT1 Cerebrospinal fluid

Journal

Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology
ISSN: 1590-3478
Titre abrégé: Neurol Sci
Pays: Italy
ID NLM: 100959175

Informations de publication

Date de publication:
09 Jan 2024
Historique:
received: 25 10 2023
accepted: 01 01 2024
medline: 9 1 2024
pubmed: 9 1 2024
entrez: 9 1 2024
Statut: aheadofprint

Résumé

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the degeneration of motor neurons, and there is currently a lack of reliable diagnostic biomarkers. This meta-analysis aimed to evaluate CHIT1, CHI3L1, and CHI3L2 levels in the cerebrospinal fluid (CSF) or blood and their diagnostic potential in ALS patients. A systematic, comprehensive search was performed of peer-reviewed English-language articles published before April 1, 2023, in PubMed, Scopus, Embase, Cochrane Library, and Web of Science. After a thorough screening, 13 primary articles were included, and their chitinases-related data were extracted for systematic review and meta-analysis. In ALS patients, the CSF CHIT1 levels were significantly elevated compared to controls with healthy control (HC) (SMD, 1.92; 95% CI, 0.78 - 3.06; P < 0.001). CHIT1 levels were elevated in the CSF of ALS patients compared to other neurodegenerative diseases (ONDS) control (SMD, 0.74; 95% CI, 0.22 - 1.27; P < 0.001) and exhibited an even more substantial increase when compared to ALS-mimicking diseases (AMDS) (SMD, 1.15; 95% CI, 0.35 - 1.94, P < 0.001). Similarly, the CSF CHI3L1 levels were significantly higher in ALS patients compared to HC (SMD, 3.16; 95% CI, 1.26 - 5.06, P < 0.001). CHI3L1 levels were elevated in the CSF of ALS patients compared to ONDS (SMD, 0.75; 95% CI, 0.32 - 1.19; P = 0.017) and exhibited a more pronounced increase when compared to AMDS (SMD, 1.92; 95% CI, 0.41 - 3.42; P < 0.001). The levels of CSF chitinases in the ALS patients showed a significant increase, supporting the role of CSF chitinases as diagnostic biomarkers for ALS.

Identifiants

pubmed: 38194198
doi: 10.1007/s10072-024-07301-5
pii: 10.1007/s10072-024-07301-5
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Hubei Provincial Natural Science Foundation and the Innovation and Development of Traditional Chinese Medicine of China
ID : 2023AFD128

Informations de copyright

© 2024. The Author(s).

Références

Hardiman O, Al-Chalabi A, Chio A et al (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3:18
Brown RH, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377(2):162–172
pubmed: 28700839 doi: 10.1056/NEJMra1603471
Marin B, Boumédiene F, Logroscino G et al (2017) Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. Int J Epidemiol 46(1):57–74
pubmed: 27185810
Fontana A, Marin B, Luna J et al (2021) Time-trend evolution and determinants of sex ratio in amyotrophic lateral sclerosis: a dose-response meta-analysis. J Neurol 268(8):2973–2984
pubmed: 33630135 doi: 10.1007/s00415-021-10464-2
Vidovic M, Müschen LH, Brakemeier S et al (2023) Current state and future directions in the diagnosis of amyotrophic lateral sclerosis. Cells 12(5)
Richards D, Morren JA, Pioro EP (2020) Time to diagnosis and factors affecting diagnostic delay in amyotrophic lateral sclerosis. J Neurol Sci 417:117054
pubmed: 32763509 doi: 10.1016/j.jns.2020.117054
Zhu Y, Yang M, Li F et al (2018) Aberrant levels of cystatin c in amyotrophic lateral sclerosis: a systematic review and meta analysis. Int J Biol Sci 14(9):1041–1053
pubmed: 29989057 pmcid: 6036727 doi: 10.7150/ijbs.25711
Falzone YM, Domi T, Agosta F et al (2020) Serum phosphorylated neurofilament heavy-chain levels reflect phenotypic heterogeneity and are an independent predictor of survival in motor neuron disease. J Neurol 267(8):2272–2280
pubmed: 32306171 pmcid: 7166001 doi: 10.1007/s00415-020-09838-9
Falzone YM, Russo T, Domi T et al (2021) Current application of neurofilaments in amyotrophic lateral sclerosis and future perspectives. Neural Regen Res 16(10):1985–1991
pubmed: 33642372 pmcid: 8343335 doi: 10.4103/1673-5374.308072
Gafson AR, Barthélemy NR, Bomont P et al (2020) Neurofilaments: neurobiological foundations for biomarker applications. Brain: J Neurol 143(7):1975–1998
doi: 10.1093/brain/awaa098
Gagliardi D, Meneri M, Saccomanno D et al (2019) Diagnostic and prognostic role of blood and cerebrospinal fluid and blood neurofilaments in amyotrophic lateral sclerosis: a review of the literature. Int J Mol Sci 20(17)
Steinacker P, Verde F, Fang L et al (2018) Chitotriosidase (CHIT1) is increased in microglia and macrophages in spinal cord of amyotrophic lateral sclerosis and cerebrospinal fluid levels correlate with disease severity and progression. J Neurol Neurosurg Psychiatry 89(3):239–247
pubmed: 29142138 doi: 10.1136/jnnp-2017-317138
Zetterberg H (2018) Chitotriosidase: shucking the role of microglia in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 89(3):228–229
pubmed: 29180539 doi: 10.1136/jnnp-2017-317379
Conti E, Sala G, Diamanti S et al (2021) Serum naturally occurring anti-TDP-43 auto-antibodies are increased in amyotrophic lateral sclerosis. Sci Rep 11(1):1978
pubmed: 33479441 pmcid: 7820419 doi: 10.1038/s41598-021-81599-5
Lunetta C, Lizio A, Gerardi F et al (2020) Urinary neopterin, a new marker of the neuroinflammatory status in amyotrophic lateral sclerosis. J Neurol 267(12):3609–3616
pubmed: 32638112 doi: 10.1007/s00415-020-10047-7
Ceccanti M, Pozzilli V, Cambieri C et al (2020) Creatine kinase and progression rate in amyotrophic lateral sclerosis. Cells 9(5)
Agnello L, Colletti T, Lo Sasso B et al (2021) Tau protein as a diagnostic and prognostic biomarker in amyotrophic lateral sclerosis. Eur J Neurol 28(6):1868–1875
pubmed: 33638255 doi: 10.1111/ene.14789
Verber NS, Shepheard SR, Sassani M et al (2019) Biomarkers in motor neuron disease: a state of the art review. Front Neurol 10:291
pubmed: 31001186 pmcid: 6456669 doi: 10.3389/fneur.2019.00291
Dreger M, Steinbach R, Otto M et al (2022) Cerebrospinal fluid biomarkers of disease activity and progression in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 93(4):422–435
pubmed: 35105727 doi: 10.1136/jnnp-2021-327503
Di Rosa M, Distefano G, Zorena K et al (2016) Chitinases and immunity: ancestral molecules with new functions. Immunobiology 221(3):399–411
pubmed: 26686909 doi: 10.1016/j.imbio.2015.11.014
Zhu Z, Zheng T, Homer RJ et al (2004) Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science (New York, NY) 304(5677):1678–1682
doi: 10.1126/science.1095336
Mazur M, Zielińska A, Grzybowski MM et al (2021) Chitinases and chitinase-like proteins as therapeutic targets in inflammatory diseases, with a special focus on inflammatory bowel diseases. Int J Mol Sci, 22(13)
Russo C, Valle MS, Casabona A et al (2023) Chitinase signature in the plasticity of neurodegenerative diseases. Int J Mol Sci 24(7)
Pinteac R, Montalban X, Comabella M (2021) Chitinases and chitinase-like proteins as biomarkers in neurologic disorders. Neurol (R) Neuroimmunol Neuroinflammation, 8(1)
Gille B, De Schaepdryver M, Dedeene L et al (2019) Inflammatory markers in cerebrospinal fluid: independent prognostic biomarkers in amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry 90(12):1338–1346
pubmed: 31175169
Thompson AG, Gray E, Bampton A et al (2019) CSF chitinase proteins in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 90(11):1215–1220
pubmed: 31123140 doi: 10.1136/jnnp-2019-320442
Costa J, Gromicho M, Pronto-Laborinho A et al (2021) Cerebrospinal fluid chitinases as biomarkers for amyotrophic lateral sclerosis. Diagnostics (Basel, Switzerland) 11(7)
Varghese AM, Sharma A, Mishra P et al (2013) Chitotriosidase - a putative biomarker for sporadic amyotrophic lateral sclerosis. Clin Proteomics 10(1):19
pubmed: 24295388 pmcid: 4220794 doi: 10.1186/1559-0275-10-19
Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097
pubmed: 19621072 pmcid: 2707599 doi: 10.1371/journal.pmed.1000097
Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13
pubmed: 15840177 pmcid: 1097734 doi: 10.1186/1471-2288-5-13
Luo D, Wan X, Liu J et al (2018) Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res 27(6):1785–1805
pubmed: 27683581 doi: 10.1177/0962280216669183
Wan X, Wang W, Liu J et al (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135
pubmed: 25524443 pmcid: 4383202 doi: 10.1186/1471-2288-14-135
(2004)Grading quality of evidence and strength of recommendations. BMJ 328(7454):1490
Haji S, Sako W, Murakami N et al (2022) Serum nfl and CHI3L1 for ALS and parkinsonian disorders in the process of diagnosis. J Neural Transm (Vienna, Austria:1996) 129(3):301–309
doi: 10.1007/s00702-022-02470-z
Illán-Gala I, Alcolea D, Montal V et al (2018) CSF sappβ, YKL-40, and NfL along the ALS-FTD spectrum. Neurology 91(17):e1619–e1628
pubmed: 30291183 doi: 10.1212/WNL.0000000000006383
Masrori P, De Schaepdryver M, Floeter MK et al (2022) Prognostic relationship of neurofilaments, CHIT1, YKL-40 and MCP-1 in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 93(6):681–682
pubmed: 34911782 doi: 10.1136/jnnp-2021-327877
Steinacker P, Feneberg E, Halbgebauer S et al (2021) Chitotriosidase as biomarker for early stage amyotrophic lateral sclerosis: a multicenter study. Amyotroph Lateral Scler Frontotemporal Degeneration 22(3–4):276–286
doi: 10.1080/21678421.2020.1861023
Varghese AM, Ghosh M, Bhagat SK et al (2020) Chitotriosidase, a biomarker of amyotrophic lateral sclerosis, accentuates neurodegeneration in spinal motor neurons through neuroinflammation. J Neuroinflammation 17(1):232
pubmed: 32762702 pmcid: 7412641 doi: 10.1186/s12974-020-01909-y
Abu-Rumeileh S, Vacchiano V, Zenesini C et al (2020) Diagnostic-prognostic value and electrophysiological correlates of CSF biomarkers of neurodegeneration and neuroinflammation in amyotrophic lateral sclerosis. J Neurol 267(6):1699–1708
pubmed: 32100123 doi: 10.1007/s00415-020-09761-z
Andrés-Benito P, Domínguez R, Colomina MJ et al (2018) Ykl40 in sporadic amyotrophic lateral sclerosis: cerebrospinal fluid levels as a prognosis marker of disease progression. Aging 10(9):2367–2382
pubmed: 30215603 pmcid: 6188478 doi: 10.18632/aging.101551
Verde F, Zaina G, Bodio C, et al (2021) Cerebrospinal fluid phosphorylated neurofilament heavy chain and chitotriosidase in primary lateral sclerosis. J Neurol Neurosurg Psychiatry 92(2):221–223
Hooten KG, Beers DR, Zhao W et al (2015) Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurother: J Am Soc Exp NeuroTher 12(2):364–375
doi: 10.1007/s13311-014-0329-3
Hollak CE, van Weely S, van Oers MH et al (1994) Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Investig 93(3):1288–1292
pubmed: 8132768 pmcid: 294082 doi: 10.1172/JCI117084
Boot RG, Renkema GH, Strijland A et al (1995) Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J Biol Chem 270(44):26252–26256
pubmed: 7592832 doi: 10.1074/jbc.270.44.26252
Di Rosa M, De Gregorio C, Malaguarnera G et al (2013) Evaluation of AMCase and CHIT-1 expression in monocyte macrophages lineage. Mol Cell Biochem 374(1–2):73–80
pubmed: 23129258 doi: 10.1007/s11010-012-1506-5
Di Rosa M, Malaguarnera G, De Gregorio C et al (2013) Evaluation of CHI3L-1 and CHIT-1 expression in differentiated and polarized macrophages. Inflammation 36(2):482–492
pubmed: 23149946 doi: 10.1007/s10753-012-9569-8
Bonneh-Barkay D, Bissel SJ, Kofler J et al (2012) Astrocyte and macrophage regulation of YKL-40 expression and cellular response in neuroinflammation. Brain Pathol (Zurich, Switzerland) 22(4):530–546
doi: 10.1111/j.1750-3639.2011.00550.x
Huang C, Huang B, Bi F et al (2014) Profiling the genes affected by pathogenic TDP-43 in astrocytes. J Neurochem 129(6):932–939
pubmed: 24447103 pmcid: 4066372 doi: 10.1111/jnc.12660
He CH, Lee CG, Dela Cruz CS et al (2013) Chitinase 3-like 1 regulates cellular and tissue responses via il-13 receptor α2. Cell Rep 4(4):830–841
pubmed: 23972995 pmcid: 3988532 doi: 10.1016/j.celrep.2013.07.032
Connolly K, Lehoux M, O’Rourke R et al (2023) Potential role of chitinase-3-like protein 1 (CHI3L1/YKL-40) in neurodegeneration and Alzheimer’s disease. Alzheimer’s Dementia 19(1):9–24
pubmed: 35234337 doi: 10.1002/alz.12612
Hu B, Trinh K, Figueira WF et al (1996) Isolation and sequence of a novel human chondrocyte protein related to mammalian members of the chitinase protein family. J Biol Chem 271(32):19415–19420
pubmed: 8702629 doi: 10.1074/jbc.271.32.19415
Litviakov N, Tsyganov M, Larionova I et al (2018) Expression of m2 macrophage markers YKL-39 and CCL18 in breast cancer is associated with the effect of neoadjuvant chemotherapy. Cancer Chemother Pharmacol 82(1):99–109
pubmed: 29728799 doi: 10.1007/s00280-018-3594-8
Sanfilippo C, Longo A, Lazzara F et al (2017) CHI3L1 and CHI3L2 overexpression in motor cortex and spinal cord of sals patients. Mol Cell Neurosciences 85:162–169
doi: 10.1016/j.mcn.2017.10.001

Auteurs

Aoling Xu (A)

School of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China.

Yujun Luo (Y)

Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China.
Department of Tuina and Rehabilitation Medicine, Hubei Provincial Institute of Traditional Chinese Medicine, Wuhan, 430061, China.
First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, 430065, China.

Yudi Tang (Y)

School of Nursing, Hubei University of Chinese Medicine, Wuhan, China.

Fen Yang (F)

School of Nursing, Hubei University of Chinese Medicine, Wuhan, China.

Xiaolian Gao (X)

School of Nursing, Hubei University of Chinese Medicine, Wuhan, China.

Guiyuan Qiao (G)

School of Nursing, Hubei University of Chinese Medicine, Wuhan, China.

Xinhong Zhu (X)

School of Nursing, Hubei University of Chinese Medicine, Wuhan, China. zxh88@hbtcm.edu.cn.

Jing Zhou (J)

Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China. zhoujing@hbhtcm.com.
Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China. zhoujing@hbhtcm.com.
Department of Tuina and Rehabilitation Medicine, Hubei Provincial Institute of Traditional Chinese Medicine, Wuhan, 430061, China. zhoujing@hbhtcm.com.
First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, 430065, China. zhoujing@hbhtcm.com.

Classifications MeSH