Four different models for simulation-based training of bronchoscopic procedures.
Bronchoscopy education
Flexible bronchoscopy
Model
Simulation
Training
Journal
BMC pulmonary medicine
ISSN: 1471-2466
Titre abrégé: BMC Pulm Med
Pays: England
ID NLM: 100968563
Informations de publication
Date de publication:
09 Jan 2024
09 Jan 2024
Historique:
received:
08
06
2023
accepted:
04
01
2024
medline:
10
1
2024
pubmed:
10
1
2024
entrez:
9
1
2024
Statut:
epublish
Résumé
Flexible bronchoscopy procedures require detailed anatomical knowledge and advanced technical skills. Simulation-based training offers a patient-safe training environment that can be more efficient than patient-based training. Physical models are cheaper than virtual reality simulators and allow trainees to be acquainted with the equipment used in the clinic. The choice of a physical model for training depends on the local context. The aim of this study was to compare four different bronchoscopy models for flexible bronchoscopy training. The BronchoBoy manikin, the Koken manikin, a human cadaver, and a preserved porcine lung were included in the study. Seven physicians experienced in bronchoscopy performed a bronchoscopic airway inspection, bronchoalveolar lavage (BAL), and tissue sampling on all four models with performance evaluated by observation and participant evaluation of models by questionnaire. Nineteen segments were identified in all human anatomy models, and the only significant difference found was that only the Thiel embedded cadaver allowed all participants to enter RB1 with an instrument in the working channel (p = 0.001). The Thiel embedded cadaver and the BronchoBoy manikin had low fluid return on BAL (22 and 52 ml), whereas the Koken manikin and the preserved porcine lung had high return (132 and 134 ml), (p = 0.017). Tissue samplings were only completed in the preserved porcine lung and the Thiel embedded cadaver (p < 0.001). An anatomically correct bronchoscopy is best simulated with the Koken manikin or the Thiel embedded cadaver. Bronchoalveolar lavage should be simulated with the Koken manikin or the preserved porcine lung. Tissue sampling procedures are best simulated using the Thiel embedded cadaver or the preserved porcine lung.
Sections du résumé
BACKGROUND
BACKGROUND
Flexible bronchoscopy procedures require detailed anatomical knowledge and advanced technical skills. Simulation-based training offers a patient-safe training environment that can be more efficient than patient-based training. Physical models are cheaper than virtual reality simulators and allow trainees to be acquainted with the equipment used in the clinic. The choice of a physical model for training depends on the local context. The aim of this study was to compare four different bronchoscopy models for flexible bronchoscopy training.
METHODS
METHODS
The BronchoBoy manikin, the Koken manikin, a human cadaver, and a preserved porcine lung were included in the study. Seven physicians experienced in bronchoscopy performed a bronchoscopic airway inspection, bronchoalveolar lavage (BAL), and tissue sampling on all four models with performance evaluated by observation and participant evaluation of models by questionnaire.
RESULTS
RESULTS
Nineteen segments were identified in all human anatomy models, and the only significant difference found was that only the Thiel embedded cadaver allowed all participants to enter RB1 with an instrument in the working channel (p = 0.001). The Thiel embedded cadaver and the BronchoBoy manikin had low fluid return on BAL (22 and 52 ml), whereas the Koken manikin and the preserved porcine lung had high return (132 and 134 ml), (p = 0.017). Tissue samplings were only completed in the preserved porcine lung and the Thiel embedded cadaver (p < 0.001).
CONCLUSIONS
CONCLUSIONS
An anatomically correct bronchoscopy is best simulated with the Koken manikin or the Thiel embedded cadaver. Bronchoalveolar lavage should be simulated with the Koken manikin or the preserved porcine lung. Tissue sampling procedures are best simulated using the Thiel embedded cadaver or the preserved porcine lung.
Identifiants
pubmed: 38195463
doi: 10.1186/s12890-024-02846-9
pii: 10.1186/s12890-024-02846-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
23Informations de copyright
© 2024. The Author(s).
Références
Amid E, Gerard AS, David J. Interventional pulmonary procedures: guidelines from the American college of chest physicians. Flexible bronchoscopy. Chest. 2003;123(5):1694–5.
Kabadayi S, Bellamy MC. Bronchoscopy in critical care. BJA Educ. 2017;17(2):48–56.
doi: 10.1093/bjaed/mkw040
Fielding DI, Maldonado F, Murgu S. Achieving competency in bronchoscopy: challenges and opportunities. Resp. 2014;19(4):472–82.
Du Rand IA, Barber PV, Goldring J, Lewis RA, Mandal S, Munavvar M, et al. British thoracic society guideline for advanced diagnostic and therapeutic flexible bronchoscopy in adults. Thorax. 2011;66(Suppl 3):iii1–21.
doi: 10.1136/thoraxjnl-2011-200713
pubmed: 21987439
American Society of Anesthesiologists. Practice guidelines for management of the difficult airway. Anesthesiology. 2003;98(5):1269–77.
doi: 10.1097/00000542-200305000-00032
Stather DR, MacEachern P, Chee A, Dumoulin E, Tremblay A. Trainee impact on procedural complications: an analysis of 967 consecutive flexible bronchoscopy procedures in an interventional pulmonology practice. Respiration. 2013;85(5):422–8.
doi: 10.1159/000346650
pubmed: 23485608
Konge L, Clementsen PF, Ringsted C, Minddal V, Larsen KR, Annema JT. Simulator training for endobronchial ultrasound: a randomised controlled trial. Eur Respir J. 2015;46(4):1140–9.
doi: 10.1183/13993003.02352-2015
pubmed: 26160875
Naur TMH, Nilsson PM, Pietersen PI, Clementsen PF, Konge L. Simulation-based training in flexible bronchoscopy and endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA): a systematic review. Respiration. 2017;93(5):355–62.
doi: 10.1159/000464331
pubmed: 28343219
Jin C, Dai L, Wang T. The application of virtual reality in the training of laparoscopic surgery: a systematic review and meta-analysis. Int J Surg. 2021;87:105859.
doi: 10.1016/j.ijsu.2020.11.022
pubmed: 33307244
Graeser K, Konge L, Kristensen MS, Ulrich AG, Hornbech K, Ringsted C. Airway management in a bronchoscopic simulator based setting: an observational study. Eur J Anaesthesiol. 2014;31(3):125–30.
doi: 10.1097/EJA.0b013e328364395a
pubmed: 24247408
Deutsch ES, Christenson T, Curry J, Hossain J, Zur K, Jacobs I. Multimodality education for airway endoscopy skill development. Ann Otol Rhinol Laryngol. 2009;118(2):81–6.
doi: 10.1177/000348940911800201
pubmed: 19326756
Yang JH, Kim YM, Chung HS, Cho J, Lee HM, Kang GH, et al. Comparison of four manikins and fresh frozen cadaver models for direct laryngoscopic orotracheal intubation training. Emerg Med J. 2010;27(1):13–6.
doi: 10.1136/emj.2008.066456
pubmed: 20028998
Eisma R, Wilkinson T. From Silent teachers to models. PLoS Biol. 2014;12(10):e1001971.
doi: 10.1371/journal.pbio.1001971
pubmed: 25333490
pmcid: 4205111
Du Rand IA, Blaikley J, Booton R, Chaudhuri N, Gupta V, Khalid S, et al. British thoracic society guideline for diagnostic flexible bronchoscopy in adults. Thorax. 2013;68(Suppl 1):i1–44.
doi: 10.1136/thoraxjnl-2013-203618
pubmed: 23860341
Konge L, Larsen KR, Clementsen P, Arendrup H, Von Buchwald C, Ringsted C. Reliable and valid assessment of clinical bronchoscopy performance. Respiration. 2012;83(1):53–60.
doi: 10.1159/000330061
pubmed: 21912087
Kennedy CC, Maldonado F, Cook DA. Simulation-based bronchoscopy training: systematic review and meta-analysis. Chest. 2013;144(1):183–92.
doi: 10.1378/chest.12-1786
pubmed: 23370487
pmcid: 3707173
Gilbody J, Prasthofer AW, Ho K, Costa ML. The use and effectiveness of cadaveric workshops in higher surgical training: a systematic review. Ann R Coll Surg Engl. 2011;93(5):347–52.
doi: 10.1308/147870811X582954
pubmed: 21943455
pmcid: 3365449
Thomas MP. The role of simulation in the development of technical competence during surgical training: a literature review. Int J Med Educ. 2013;4:48–58.
doi: 10.5116/ijme.513b.2df7
pmcid: 4205537
Ishiwata T, Nakajima T, Terada J, Tatsumi K. A novel biosimulator based on ex vivo porcine lungs for training in peripheral tissue sampling using endobronchial ultrasonography with a guide sheath. J Thorac Dis. 2019;11(10):4152–8.
doi: 10.21037/jtd.2019.10.05
pubmed: 31737298
pmcid: 6837949
Judge EP, Hughes JML, Egan JJ, Maguire M, Molloy EL, O’Dea S. Anatomy and bronchoscopy of the porcine lung: a model for translational respiratory medicine. Am J Respir Cell Mol Biol. 2014;51(3):334–43.
doi: 10.1165/rcmb.2013-0453TR
pubmed: 24828366
Garner JL, Garner SD, Hardie RJ, Molyneaux PL, Singh S, Kemp SV, et al. Evaluation of a re-useable bronchoscopy biosimulator with ventilated lungs. ERJ Open Res. 2019;5(2):00035–2019.
doi: 10.1183/23120541.00035-2019
pubmed: 31011572
pmcid: 6469070
Patwa A, Shah A. Anatomy and physiology of respiratory system relevant to anaesthesia. Indian J Anaesth. 2015;59(9):533–41.
doi: 10.4103/0019-5049.165849
pubmed: 26556911
pmcid: 4613399
Meyer KC, Raghu G, Baughman RP, Brown KK, Costabel U, Du Bois RM, et al. An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am J Respir Crit Care Med. 2012;185(9):1004–14.
doi: 10.1164/rccm.201202-0320ST
pubmed: 22550210
Eisma R, Lamb C, Soames RW. From formalin to Thiel embalming: what changes? One anatomy department’s experiences. Clin Anat. 2013;26(5):564–71.
doi: 10.1002/ca.22222
pubmed: 23408386
Aktas Z, Gunay E, Hoca NT, Yilmaz A, Demirag F, Gunay S, et al. Endobronchial cryobiopsy or forceps biopsy for lung cancer diagnosis. Ann Thorac Med. 2010;5(4):242–6.
doi: 10.4103/1817-1737.69117
pubmed: 20981186
pmcid: 2954380
CLA Coburger Lehrmittelanstalt. CLA Medical Phantoms. CLA Phantoms; 2005. pp. 28–30.
Koken CO. Bronchoscopy training model: LM-092. Tokyo: Koken CO., LTD; 2014. pp. 1–16.
Waerlop F, Rashidian N, Marrannes S, D’Herde K, Willaert W. Thiel embalmed human cadavers in surgical education: optimizing realism and long-term application. Am J Surg. 2021;221(6):1300–2.
doi: 10.1016/j.amjsurg.2020.10.007
pubmed: 33070982
Hayashi S, Naito M, Kawata S, Qu N, Hatayama N, Hirai S, et al. History and future of human cadaver preservation for surgical training: from formalin to saturated salt solution method. Anat Sci Int. 2016;91(1):1–7.
doi: 10.1007/s12565-015-0299-5
pubmed: 26670696
Rajasekhar SS, Kumar VD, Raveendranath V, Kalayarasan R, Gnanasekaran S, Pottakkat B, et al. Advanced training in laparoscopic gastrointestinal surgical procedures using Genelyn ® -embalmed human cadavers: a novel model. J Minim Access Surg. 2021;17(4):495–501.
doi: 10.4103/jmas.JMAS_152_20
pubmed: 33605926
pmcid: 8486066
Anatomy Warehouse [Internet]. Koken Ultrasonic Bronchoscopy Simulator. [cited 2023 May 31]. Available from: https://anatomywarehouse.com/koken-ultrasonic-bronchoscopy-simulator-a-105296 .
GT Simulators [Internet]. Bronchoscope Model - BronchoBoy CLA. [cited 2023 May 31]. Available from: https://www.gtsimulators.com/products/bronchoscopy-model-broncho-boy-cla9 .
Fenwick N, Griffin G, Gauthier C. The welfare of animals used in science: how the three rs ethic guides improvements. Can Vet J. 2009;50(5):523–30.
pubmed: 19436640
pmcid: 2671878
Festing S, Wilkinson R. The ethics of animal research. Talking point on the use of animals in scientific research. Vol. 8, EMBO. 2007 Jun.
Nasco Education [Internet]. NASCOGuard Preserved Specimens. Safety Data Sheet. [cited 2023 May 31]. Available from: https://www.enasco.com/medias/9306a.pdf?context=bWFzdGVyfHJvb3R8 Mzc3MDI1fGFwcGxpY2F0aW9uL3BkZnxoYjAvaGYwLzEwMTYyNDg5NTg5NzkwLzkzMDZhLnBkZnw0NWQ4NTM4N2U1MmViMDU2ZGVhZGFmY2ZkMWY1MTg3NTQ0YjRkZGZiOGJhNThmNTBlMDUzOTNjYzhmMGFjYjli.
Nasco Education [Internet]. Nasco Inflatable Lung Kit. [cited 2023 May 31]. Available from: https://www.enasco.com/p/Nasco-Inflatable-Lung-Kit%2BLS03765 .
Østergaard ML, Konge L, Kahr N, Albrecht-Beste E, Nielsen MB, Nielsen KR. Four virtual-reality simulators for Diagnostic Abdominal Ultrasound Training in Radiology. Diagnostics (Basel). 2019;9(2):50.
doi: 10.3390/diagnostics9020050
pubmed: 31064080
Tie D, Liu H, Guan R, Holt-Torres P, Liu Y, Wang Y, et al. In vivo assessment of biodegradable magnesium alloy ureteral stents in a pig model. Acta Biomater. 2020;116:415–25.
doi: 10.1016/j.actbio.2020.09.023
pubmed: 32949824
Henze LJ, Koehl NJ, O’Shea JP, Kostewicz ES, Holm R, Griffin BT. The pig as a preclinical model for predicting oral bioavailability and in vivo performance of pharmaceutical oral dosage forms: a PEARRL review. J Pharm Pharmacol. 2019;71(4):581–602.
doi: 10.1111/jphp.12912
pubmed: 29635685
O’Shea C, Khan KA, Nardelli P, Jaeger HA, Kennedy MP, Cantillon-Murphy P. Evaluation of Endoscopically Deployed Radiopaque Tumor models in Bronchoscopy. J Bronchol Interv Pulmonol. 2016;23(2):112–22.
doi: 10.1097/LBR.0000000000000269
Cold KM, Xie S, Nielsen AO, Clementsen PF, Konge L. Artificial Intelligence Improves Novices’ Bronchoscopy Performance: A Randomized Controlled Trial in a Simulated Setting. Chest. 2023 Aug;23:0012. 3692(23)05276-5. Figures.