Faecalibacterium duncaniae A2-165 regulates the expression of butyrate synthesis, ferrous iron uptake, and stress-response genes based on acetate consumption.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
10 Jan 2024
Historique:
received: 23 06 2023
accepted: 29 12 2023
medline: 11 1 2024
pubmed: 11 1 2024
entrez: 10 1 2024
Statut: epublish

Résumé

The promising next-generation probiotic Faecalibacterium prausnitzii is one of the most abundant acetate-consuming, butyrate-producing bacteria in the healthy human gut. Yet, little is known about how acetate availability affects this bacterium's gene expression strategies. Here, we investigated the effect of acetate on temporal changes in the transcriptome of F. duncaniae A2-165 cultures using RNA sequencing. We compared gene expression patterns between two growth phases (early stationary vs. late exponential) and two acetate levels (low: 3 mM vs. high: 23 mM). Only in low-acetate conditions, a general stress response was activated. In high-acetate conditions, there was greater expression of genes related to butyrate synthesis and to the importation of B vitamins and iron. Specifically, expression was strongly activated in the case of the feoAABC operon, which encodes a FeoB ferrous iron transporter, but not in the case of the feoAB gene, which encodes a second putative FeoAB transporter. Moreover, excess ferrous iron repressed feoB expression but not feoAB. Lastly, FeoB but not FeoAB peptides from strain A2-165 were found in abundance in a healthy human fecal metaproteome. In conclusion, we characterized two early-stationary transcriptomes based on acetate consumption and this work highlights the regulation of feoB expression in F. duncaniae A2-165.

Identifiants

pubmed: 38200051
doi: 10.1038/s41598-023-51059-3
pii: 10.1038/s41598-023-51059-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

987

Subventions

Organisme : French funding agency "Agence Nationale de la Recherche"
ID : ANR-16-CE29-0020, DOPEOS
Organisme : French funding agency "Agence Nationale de la Recherche"
ID : BP-Acetate, Qualiment-Institut Carnot
Organisme : Agence Nationale de la Recherche
ID : ANR-10-INBS-09

Informations de copyright

© 2024. The Author(s).

Références

Oren, A. & Garrity, G. M. Valid publication of new names and new combinations effectively published outside the IJSEM. Int. J. Syst. Evol. Microbiol. 71, 005096. https://doi.org/10.1099/ijsem.0.005096 (2021).
doi: 10.1099/ijsem.0.005096
Duncan, S. H., Hold, G. L., Harmsen, H. J. M., Stewart, C. S. & Flint, H. J. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 52, 2141–2146. https://doi.org/10.1099/00207713-52-6-2141 (2002).
doi: 10.1099/00207713-52-6-2141 pubmed: 12508881
Miquel, S. et al. Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 16, 255–261. https://doi.org/10.1016/j.mib.2013.06.003 (2013).
doi: 10.1016/j.mib.2013.06.003 pubmed: 23831042
Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J. & Martinez-Medina, M. Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics. ISME J. 11, 841–852. https://doi.org/10.1038/ismej.2016.176 (2017).
doi: 10.1038/ismej.2016.176 pubmed: 28045459 pmcid: 5364359
Martin, R., Bermudez-Humaran, L. G. & Langella, P. Searching for the bacterial effector: The example of the multi-skilled commensal bacterium Faecalibacterium prausnitzii. Front. Microbiol. 9, 346. https://doi.org/10.3389/fmicb.2018.00346 (2018).
doi: 10.3389/fmicb.2018.00346 pubmed: 29559959 pmcid: 5845625
Sakamoto, M. et al. Genome-based, phenotypic and chemotaxonomic classification of Faecalibacterium strains: Proposal of three novel species Faecalibacterium duncaniae sp. nov., Faecalibacterium hattorii sp. nov. and Faecalibacterium gallinarum sp. nov. Int. J. Syst. Evol. Microbiol. 72, 005379. https://doi.org/10.1099/ijsem.0.005379 (2022).
doi: 10.1099/ijsem.0.005379
Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. U.S.A. 105, 16731–16736. https://doi.org/10.1073/pnas.0804812105 (2008).
doi: 10.1073/pnas.0804812105 pubmed: 18936492 pmcid: 2575488
Sokol, H. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 15, 1183–1189. https://doi.org/10.1002/ibd.20903 (2009).
doi: 10.1002/ibd.20903 pubmed: 19235886
Tilg, H. & Moschen, A. R. Microbiota and diabetes: An evolving relationship. Gut 63, 1513–1521. https://doi.org/10.1136/gutjnl-2014-306928 (2014).
doi: 10.1136/gutjnl-2014-306928 pubmed: 24833634
Langella, P., Guarner, F. & Martin, R. Editorial: Next-generation probiotics: From commensal bacteria to novel drugs and food supplements. Front. Microbiol. 10, 1973. https://doi.org/10.3389/fmicb.2019.01973 (2019).
doi: 10.3389/fmicb.2019.01973 pubmed: 31507575 pmcid: 6718915
Pryde, S. E., Duncan, S. H., Hold, G. L., Stewart, C. S. & Flint, H. J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217, 133–139. https://doi.org/10.1111/j.1574-6968.2002.tb11467.x (2002).
doi: 10.1111/j.1574-6968.2002.tb11467.x pubmed: 12480096
Louis, P. & Flint, H. J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294(1), 8. https://doi.org/10.1111/j.1574-6968.2009.01514.x (2009).
doi: 10.1111/j.1574-6968.2009.01514.x
Lenoir, M. et al. Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3. Gut Microbes 12, 1–16. https://doi.org/10.1080/19490976.2020.1826748 (2020).
doi: 10.1080/19490976.2020.1826748 pubmed: 33054518
Quevrain, E., Maubert, M. A., Sokol, H., Devreese, B. & Seksik, P. The presence of the anti-inflammatory protein MAM, from Faecalibacterium prausnitzii, in the intestinal ecosystem. Gut 65, 882. https://doi.org/10.1136/gutjnl-2015-311094 (2016).
doi: 10.1136/gutjnl-2015-311094 pubmed: 26669616
Quevrain, E. et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65, 415–425. https://doi.org/10.1136/gutjnl-2014-307649 (2016).
doi: 10.1136/gutjnl-2014-307649 pubmed: 26045134
Auger, S. et al. Intraspecific diversity of microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii. Int. J. Mol. Sci. 23, 1705. https://doi.org/10.3390/ijms23031705 (2022).
doi: 10.3390/ijms23031705 pubmed: 35163630 pmcid: 8836110
Martin, R. et al. The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm. Bowel Dis. 20, 417–430. https://doi.org/10.1097/01.MIB.0000440815.76627.64 (2014).
doi: 10.1097/01.MIB.0000440815.76627.64 pubmed: 24418903
Martin, R. et al. Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol. 15, 67. https://doi.org/10.1186/s12866-015-0400-1 (2015).
doi: 10.1186/s12866-015-0400-1 pubmed: 25888448 pmcid: 4391109
Duncan, S. H. et al. Contribution of acetate to butyrate formation by human faecal bacteria. Br. J. Nutr. 91, 915–923. https://doi.org/10.1079/BJN20041150 (2004).
doi: 10.1079/BJN20041150 pubmed: 15182395
Charrier, C. et al. A novel class of CoA-transferase involved in short-chain fatty acid metabolism in butyrate-producing human colonic bacteria. Microbiology 152, 179–185. https://doi.org/10.1099/mic.0.28412-0 (2006).
doi: 10.1099/mic.0.28412-0 pubmed: 16385128
D’Hoe, K. et al. Integrated culturing, modeling and transcriptomics uncovers complex interactions and emergent behavior in a three-species synthetic gut community. Elife 7, e37090. https://doi.org/10.7554/eLife.37090 (2018).
doi: 10.7554/eLife.37090 pubmed: 30322445 pmcid: 6237439
Lopez-Siles, M. et al. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl. Environ. Microbiol. 78, 420–428. https://doi.org/10.1128/AEM.06858-11 (2012).
doi: 10.1128/AEM.06858-11 pubmed: 22101049 pmcid: 3255724
Rios-Covian, D., Gueimonde, M., Duncan, S. H., Flint, H. J. & de los Reyes-Gavilan, C. G. Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis. FEMS Microbiol. Lett. 362, fnv176. https://doi.org/10.1093/femsle/fnv176 (2015).
doi: 10.1093/femsle/fnv176 pubmed: 26420851
Wrzosek, L. et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 11, 61. https://doi.org/10.1186/1741-7007-11-61 (2013).
doi: 10.1186/1741-7007-11-61 pubmed: 23692866 pmcid: 3673873
Macfarlane, S. & Macfarlane, G. T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62, 67–72. https://doi.org/10.1079/PNS2002207 (2003).
doi: 10.1079/PNS2002207 pubmed: 12740060
Miquel, S. et al. Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii. Gut Microbes 5, 146–151. https://doi.org/10.4161/gmic.27651 (2014).
doi: 10.4161/gmic.27651 pubmed: 24637606 pmcid: 4063839
Martin, R. et al. Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: A step forward in the use of F. prausnitzii as a next-generation probiotic. Front. Microbiol. 8, 122. https://doi.org/10.3389/fmicb.2017.01226 (2017).
doi: 10.3389/fmicb.2017.01226
Lebas, M., Garault, P., Carrillo, D., Codoner, F. M. & Derrien, M. Metabolic response of Faecalibacterium prausnitzii to cell-free supernatants from lactic acid bacteria. Microorganisms 8, 1528. https://doi.org/10.3390/microorganisms8101528 (2020).
doi: 10.3390/microorganisms8101528 pubmed: 33027936 pmcid: 7650636
Kang, D. et al. Functional dissection of the phosphotransferase system provides insight into the prevalence of Faecalibacterium prausnitzii in the host intestinal environment. Environ. Microbiol. 23, 4726–4740. https://doi.org/10.1111/1462-2920.15681 (2021).
doi: 10.1111/1462-2920.15681 pubmed: 34296500
Harms, A., Brodersen, D. E., Mitarai, N. & Gerdes, K. Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Mol. Cell 70, 768–784. https://doi.org/10.1016/j.molcel.2018.01.003 (2018).
doi: 10.1016/j.molcel.2018.01.003 pubmed: 29398446
Gottesman, S. Trouble is coming: Signaling pathways that regulate general stress responses in bacteria. J. Biol. Chem. 294, 11685–11700. https://doi.org/10.1074/jbc.REV119.005593 (2019).
doi: 10.1074/jbc.REV119.005593 pubmed: 31197038 pmcid: 6682744
Saier, M. H. Jr. A functional-phylogenetic system for the classification of transport proteins. J. Cell. Biochem. Suppl 32–33, 84–94. https://doi.org/10.1002/(sici)1097-4644(1999)75:32+%3c84::aid-jcb11%3e3.0.co;2-m (1999).
doi: 10.1002/(sici)1097-4644(1999)75:32+<84::aid-jcb11>3.0.co;2-m pubmed: 10629107
Sestok, A. E., Linkous, R. O. & Smith, A. T. Toward a mechanistic understanding of Feo-mediated ferrous iron uptake. Metallomics 10, 887–898. https://doi.org/10.1039/c8mt00097b (2018).
doi: 10.1039/c8mt00097b pubmed: 29953152
Lau, C. K., Krewulak, K. D. & Vogel, H. J. Bacterial ferrous iron transport: The Feo system. FEMS Microbiol. Rev. 40, 273–298. https://doi.org/10.1093/femsre/fuv049 (2016).
doi: 10.1093/femsre/fuv049 pubmed: 26684538
Henry, C. et al. Modern metaproteomics: A unique tool to characterize the active microbiome in health and diseases, and pave the road towards new biomarkers-example of Crohn’s disease and ulcerative colitis flare-ups. Cells 11, 1340. https://doi.org/10.3390/cells11081340 (2022).
doi: 10.3390/cells11081340 pubmed: 35456018 pmcid: 9028112
Martin, R. et al. Faecalibacterium: A bacterial genus with promising human health applications. FEMS Microbiol. Rev. 47, fuad039. https://doi.org/10.1093/femsre/fuad039 (2023).
doi: 10.1093/femsre/fuad039 pubmed: 37451743 pmcid: 10410495
Heinken, A. et al. Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. J. Bacteriol. 196, 3289–3302. https://doi.org/10.1128/JB.01780-14 (2014).
doi: 10.1128/JB.01780-14 pubmed: 25002542 pmcid: 4135701
Hecker, M., Schumann, W. & Volker, U. Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol. 19, 417–428. https://doi.org/10.1046/j.1365-2958.1996.396932.x (1996).
doi: 10.1046/j.1365-2958.1996.396932.x pubmed: 8830234
Morvan, C., Folgosa, F., Kint, N., Teixeira, M. & Martin-Verstraete, I. Responses of Clostridia to oxygen: From detoxification to adaptive strategies. Environ. Microbiol. 23, 4112–4125. https://doi.org/10.1111/1462-2920.15665 (2021).
doi: 10.1111/1462-2920.15665 pubmed: 34245087
Pi, H. & Helmann, J. D. Ferrous iron efflux systems in bacteria. Metallomics 9, 840–851. https://doi.org/10.1039/c7mt00112f (2017).
doi: 10.1039/c7mt00112f pubmed: 28604884
Pisithkul, T. et al. Metabolic remodeling during biofilm development of Bacillus subtilis. mBio https://doi.org/10.1128/mBio.00623-19 (2019).
doi: 10.1128/mBio.00623-19 pubmed: 31113899 pmcid: 6529636
Berges, M. et al. Iron regulation in Clostridioides difficile. Front. Microbiol. 9, 3183. https://doi.org/10.3389/fmicb.2018.03183 (2018).
doi: 10.3389/fmicb.2018.03183 pubmed: 30619231 pmcid: 6311696
Chazarreta-Cifre, L., Martiarena, L., de Mendoza, D. & Altabe, S. G. Role of ferredoxin and flavodoxins in Bacillus subtilis fatty acid desaturation. J. Bacteriol. 193, 4043–4048. https://doi.org/10.1128/JB.05103-11 (2011).
doi: 10.1128/JB.05103-11 pubmed: 21665975 pmcid: 3147679
Bustin, S. A. et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622. https://doi.org/10.1373/clinchem.2008.112797 (2009).
doi: 10.1373/clinchem.2008.112797 pubmed: 19246619
Wattam, A. R. et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 42, D581–D591. https://doi.org/10.1093/nar/gkt1099 (2014).
doi: 10.1093/nar/gkt1099 pubmed: 24225323

Auteurs

Sophie Verstraeten (S)

Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.

Séverine Layec (S)

Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.

Sandrine Auger (S)

Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France.

Catherine Juste (C)

Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.

Céline Henry (C)

Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.

Sawiya Charif (S)

Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.

Yan Jaszczyszyn (Y)

Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-Sur-Yvette, France.

Harry Sokol (H)

Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France.

Laurent Beney (L)

UMR PAM, INRAe, Université Bourgogne Franche-Conté, AgroSup Dijon, Dijon, France.

Philippe Langella (P)

Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France.

Muriel Thomas (M)

Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France.

Eugénie Huillet (E)

Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France. eugenie.huillet@inrae.fr.
Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France. eugenie.huillet@inrae.fr.

Classifications MeSH