Consistent patterns of common species across tropical tree communities.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
10 Jan 2024
10 Jan 2024
Historique:
received:
03
12
2022
accepted:
01
11
2023
medline:
11
1
2024
pubmed:
11
1
2024
entrez:
10
1
2024
Statut:
aheadofprint
Résumé
Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations
Identifiants
pubmed: 38200314
doi: 10.1038/s41586-023-06820-z
pii: 10.1038/s41586-023-06820-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Lewis, S. L. et al. Above-ground biomass and structure of 260 African tropical forests. Phil. Trans. R. Soc. B. 368, 20120295 (2013).
pubmed: 23878327
pmcid: 3720018
doi: 10.1098/rstb.2012.0295
Rovero, F. & Ahumada, J. The Tropical Ecology, Assessment and Monitoring (TEAM) Network: an early warning system for tropical rain forests. Sci. Total Environ. 574, 914–923 (2017).
pubmed: 27665451
doi: 10.1016/j.scitotenv.2016.09.146
Anderson‐Teixeira, K. J. et al. CTFS–Forest GEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).
doi: 10.1111/gcb.12712
Slik, J. W. F. et al. Phylogenetic classification of the world’s tropical forests. Proc. Natl Acad. Sci. USA 115, 1837–1842 (2018).
pubmed: 29432167
pmcid: 5828595
doi: 10.1073/pnas.1714977115
Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).
pubmed: 29259276
pmcid: 5736600
doi: 10.1038/s41467-017-01997-0
ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).
pubmed: 24136971
doi: 10.1126/science.1243092
Corlett, R. T. & Primack, R. B. Tropical Rain Forests: An Ecological and Biogeographical Comparison (John Wiley & Sons, 2011).
IPCC Climate change 2022. Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press., 2022).
Gough, C. Terrestrial primary production: fuel for life. Nat. Educ. Knowl. 3, 28 (2011).
Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).
pubmed: 29258288
doi: 10.1038/nature25138
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
pubmed: 32132693
doi: 10.1038/s41586-020-2035-0
Dirzo, R. & Raven, P. H. Global state of biodiversity and loss. Annu. Rev. Env. Res. 28, 137–167 (2003).
doi: 10.1146/annurev.energy.28.050302.105532
Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. in Biodiversity Hotspots (eds Zachos, F. & Habel, J.) 3–22 (Springer, 2011).
Valencia, R., Balslev, H. & Paz Y Miño C, G. High tree alpha-diversity in Amazonian Ecuador. Biodivers. Conserv. 3, 21–28 (1994).
doi: 10.1007/BF00115330
Beech, E., Rivers, M., Oldfield, S. & Smith, P. P. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. For. 36, 454–489 (2017).
doi: 10.1080/10549811.2017.1310049
Cazzolla Gatti, R. et al. The number of tree species on Earth. Proc. Natl Acad. Sci. USA 119, e2115329119 (2022).
pubmed: 35101981
pmcid: 8833151
doi: 10.1073/pnas.2115329119
McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).
pubmed: 17845298
doi: 10.1111/j.1461-0248.2007.01094.x
Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019).
pubmed: 31807712
pmcid: 6881168
doi: 10.1126/sciadv.aaz0414
Baldridge, E., Harris, D. J., Xiao, X. & White, E. P. An extensive comparison of species-abundance distribution models. PeerJ 4, e2823 (2016).
pubmed: 28028483
pmcid: 5183127
doi: 10.7717/peerj.2823
Draper, F. C. et al. Amazon tree dominance across forest strata. Nat. Ecol. Evol. 5, 757–767 (2021).
pubmed: 33795854
doi: 10.1038/s41559-021-01418-y
ter Steege, H. et al. Biased-corrected richness estimates for the Amazonian tree flora. Sci. Rep. 10, 10130 (2020).
pubmed: 32576943
pmcid: 7311553
doi: 10.1038/s41598-020-66686-3
Fauset, S. et al. Hyperdominance in Amazonian forest carbon cycling. Nat. Commun. 6, 6857 (2015).
pubmed: 25919449
doi: 10.1038/ncomms7857
Pitman, N. C. A., Silman, M. R. & Terborgh, J. W. Oligarchies in Amazonian tree communities: a ten-year review. Ecography 36, 114–123 (2013).
doi: 10.1111/j.1600-0587.2012.00083.x
Pitman, N. C. A. et al. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82, 2101–2117 (2001).
doi: 10.1890/0012-9658(2001)082[2101:DADOTS]2.0.CO;2
Slik, J. W. et al. An estimate of the number of tropical tree species. Proc. Natl Acad. Sci. USA 112, 7472–7477 (2015).
pubmed: 26034279
pmcid: 4475970
doi: 10.1073/pnas.1423147112
Parmentier, I. et al. The odd man out? Might climate explain the lower tree α‐diversity of African rain forests relative to Amazonian rain forests? J. Ecol. 95, 1058–1071 (2007).
doi: 10.1111/j.1365-2745.2007.01273.x
McGill, B. J. & Nekola, J. C. Mechanisms in macroecology: AWOL or purloined letter? Towards a pragmatic view of mechanism. Oikos 119, 591–603 (2010).
doi: 10.1111/j.1600-0706.2009.17771.x
Richards, P. W. in Tropical Forest Ecosystems of Africa and South America: A Comparative Review (eds Meggers, B. J., Ayensu, E. S. & Duckworth, W. D.) 21–26 (Smithsonian Institution Press, 1973).
Couvreur, T. L. Odd man out: why are there fewer plant species in African rain forests? Plant Syst. Evol. 301, 1299–1313 (2015).
doi: 10.1007/s00606-014-1180-z
Tovo, A. et al. Upscaling species richness and abundances in tropical forests. Sci. Adv. 3, e1701438 (2017).
pubmed: 29057324
pmcid: 5647133
doi: 10.1126/sciadv.1701438
Cardoso, D. et al. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Natl Acad. Sci. USA 114, 10695–10700 (2017).
pubmed: 28923966
pmcid: 5635885
doi: 10.1073/pnas.1706756114
Ter Steege, H. et al. Towards a dynamic list of Amazonian tree species. Sci. Rep. 9, 3501 (2019).
pubmed: 30837572
pmcid: 6401171
doi: 10.1038/s41598-019-40101-y
Damasco, G. et al. Revisiting the hyperdominance of Neotropical tree species under a taxonomic, functional and evolutionary perspective. Sci. Rep. 11, 9585 (2021).
pubmed: 33953271
pmcid: 8099866
doi: 10.1038/s41598-021-88417-y
Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
doi: 10.1111/gcb.14904
Darwin, C. On The Origin of Species by Means of Natural Selection: Or, the Preservation of Favored Races in the Struggle for Life (J. Murray, 1859).
McGill, B. J. in Biological Diversity: Frontiers In Measurement and Assessment (ed. Magurran, A. E. & McGill, B. J.) 105–122 (2011).
Henderson, P. A. & Magurran, A. E. Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure. Proc. R. Soc. B 277, 1561–1570 (2010).
pubmed: 20071388
pmcid: 2871842
doi: 10.1098/rspb.2009.2189
Currano, E., Jacobs, B. & Pan, A. Is Africa really an “odd man out”? Evidence for diversity decline across the Oligocene–Miocene boundary. Int. J. Plant Sci. 182, 551–563 (2021).
doi: 10.1086/714308
Morley, R. J. Origin and Evolution of Tropical Rain Forests (John Wiley & Sons, 2000).
Scerri, E. M. L., Roberts, P., Maezumi, S. Y. & Malhi, Y. Tropical forests in the deep human past. Phil. Trans. R. Soc. B 377, 20200500 (2022).
pubmed: 35249383
pmcid: 8899628
doi: 10.1098/rstb.2020.0500
Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B 281, 20133254 (2014).
pubmed: 24898370
pmcid: 4071532
doi: 10.1098/rspb.2013.3254
Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355, 925–931 (2017).
pubmed: 28254935
doi: 10.1126/science.aal0157
Garcin, Y. et al. Early anthropogenic impact on Western Central African rainforests 2,600 y ago. Proc. Natl Acad. Sci. USA 115, 3261–3266 (2018).
pubmed: 29483260
pmcid: 5879660
doi: 10.1073/pnas.1715336115
Nekola, J. C. & Brown, J. H. The wealth of species: ecological communities, complex systems and the legacy of Frank Preston. Ecol. Lett. 10, 188–196 (2007).
pubmed: 17305802
doi: 10.1111/j.1461-0248.2006.01003.x
Diaz, R. M., Ye, H. & Ernest, S. K. M. Empirical abundance distributions are more uneven than expected given their statistical baseline. Ecol. Lett. 24, 1739–2039 (2021).
doi: 10.1111/ele.13820
Harte, J. & Newman, E. A. Maximum information entropy: a foundation for ecological theory. Trends Ecol. Evol. 29, 384–389 (2014).
pubmed: 24863182
doi: 10.1016/j.tree.2014.04.009
Harte, J., Brush, M., Newman, E. A. & Umemura, K. An equation of state unifies diversity, productivity, abundance and biomass. Commun. Biol. 5, 874 (2022).
pubmed: 36008589
pmcid: 9411111
doi: 10.1038/s42003-022-03817-8
Pos, E. et al. Scaling issues of neutral theory reveal violations of ecological equivalence for dominant Amazonian tree species. Ecol. Lett. 22, 1072–1082 (2019).
pubmed: 30938488
pmcid: 6849817
doi: 10.1111/ele.13264
Silva de Miranda, P. L. et al. Dissecting the difference in tree species richness between Africa and South America. Proc. Natl Acad. Sci. USA 119, e2112336119 (2022).
pubmed: 35349336
pmcid: 9168492
doi: 10.1073/pnas.2112336119
Webb, C. O. & Pitman, N. C. Phylogenetic balance and ecological evenness. Syst. Biol. 51, 898–907 (2002).
pubmed: 12554456
doi: 10.1080/10635150290102609
Comita, L. S. et al. Testing predictions of the Janzen–Connell hypothesis: a meta‐analysis of experimental evidence for distance‐and density‐dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).
pubmed: 25253908
pmcid: 4140603
doi: 10.1111/1365-2745.12232
Ricklefs, R. E. & Renner, S. S. Global correlations in tropical tree species richness and abundance reject neutrality. Science 335, 464–467 (2012).
pubmed: 22282811
doi: 10.1126/science.1215182
Koffel, T., Umemura, K., Litchman, E. & Klausmeier, C. A. A general framework for species‐abundance distributions: linking traits and dispersal to explain commonness and rarity. Ecol. Lett. 25, 2359–2371 (2022).
pubmed: 36106355
pmcid: 9826146
doi: 10.1111/ele.14094
Ikabanga, D. U. et al. Combining morphology and population genetic analysis uncover species delimitation in the widespread African tree genus Santiria (Burseraceae). Phytotaxa 321, 166 (2017).
doi: 10.11646/phytotaxa.321.2.2
Koffi, K. G. et al. A combined analysis of morphological traits, chloroplast and nuclear DNA sequences within Santiria trimera (Burseraceae) suggests several species following the Biological Species Concept. Plant Ecol. Evol. 143, 160–169 (2010).
doi: 10.5091/plecevo.2010.433
Ellison, A. M. et al. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3, 479–486 (2005).
doi: 10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2
Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).
pubmed: 25907115
doi: 10.1038/ncomms7936
Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).
pubmed: 29493062
pmcid: 5957270
doi: 10.1111/ele.12928
Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).
pubmed: 21832994
doi: 10.1038/nature10282
Olson, D. M. et al. Terrestrial Ecoregions of the World: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).
doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).
pubmed: 32439789
doi: 10.1126/science.aaw7578
Clark, D. B. & Clark, D. A. Landscape-scale variation in forest structure and biomass in a tropical rain forest. For. Ecol. Manag. 137, 185–198 (2000).
doi: 10.1016/S0378-1127(99)00327-8
ForestPlots.net.Taking the pulse of Earth’s tropical forests using networks of highly distributed plots. Biol. Conserv. 260, 108849 (2021).
doi: 10.1016/j.biocon.2020.108849
Lopez‐Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci. 22, 610–613 (2011).
doi: 10.1111/j.1654-1103.2011.01312.x
Boyle, B. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14, 16 (2013).
pubmed: 23324024
pmcid: 3554605
doi: 10.1186/1471-2105-14-16
Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).
pubmed: 26331545
doi: 10.1038/nature14967
Esri, A. D. ArcGIS Release 10. Documentation Manual (Environmental Systems Research Institute, 2011).
Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12, 42–58 (1943).
doi: 10.2307/1411
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
doi: 10.1002/joc.5086
Prado, P. I., Miranda, M. D., Chalom, A., Prado, M. P. I. & Imports, M. sads: maximum likelihood models for species abundance distributions. R package version 0.4.2 (2018).
Preston, F. W. The commonness, and rarity, of species. Ecology 29, 254–283 (1948).
doi: 10.2307/1930989