Tumor hypoxia and role of hypoxia-inducible factor in oral cancer.

Axitinib Bevacizumab Glucose metabolism Hypoxia Oral cancer Pazopanib Sunitinib TP53 VEGF

Journal

World journal of surgical oncology
ISSN: 1477-7819
Titre abrégé: World J Surg Oncol
Pays: England
ID NLM: 101170544

Informations de publication

Date de publication:
11 Jan 2024
Historique:
received: 23 09 2023
accepted: 14 12 2023
medline: 11 1 2024
pubmed: 11 1 2024
entrez: 10 1 2024
Statut: epublish

Résumé

Head and neck cancer (HNC) is one of the most frequent malignancies in Asian males with a poor prognosis. Apart from well-known prognostic indicators, markers of tumor hypoxia can help us predict response to treatment and survival. A review of the literature on the present evidence and potential clinical importance of tumor hypoxia in head and neck cancer was carried out. The data obtained from the literature search is presented as a narrative review. The literature shows possible associations between prognosis and low tumor oxygenation. Intermediate hypoxia biomarkers like HIF-1, GLUT-1, miRNA, and lactate, can help in predicting the response to therapy and survival as their altered expression is related to prognosis. Hypoxia is common in HNC and can be detected by use of biomarkers. The tumors that show expression of hypoxia biomarkers have poor prognosis except for patients with human papilloma virus-associated or VHL-associated cancers. Therapeutic targeting of hypoxia is emerging; however, it is still in its nascent stage, with increasing clinical trials hypoxia is set to emerge as an attractive therapeutic target in HNC.

Sections du résumé

BACKGROUND BACKGROUND
Head and neck cancer (HNC) is one of the most frequent malignancies in Asian males with a poor prognosis. Apart from well-known prognostic indicators, markers of tumor hypoxia can help us predict response to treatment and survival.
METHODS METHODS
A review of the literature on the present evidence and potential clinical importance of tumor hypoxia in head and neck cancer was carried out. The data obtained from the literature search is presented as a narrative review.
RESULTS RESULTS
The literature shows possible associations between prognosis and low tumor oxygenation. Intermediate hypoxia biomarkers like HIF-1, GLUT-1, miRNA, and lactate, can help in predicting the response to therapy and survival as their altered expression is related to prognosis.
CONCLUSIONS CONCLUSIONS
Hypoxia is common in HNC and can be detected by use of biomarkers. The tumors that show expression of hypoxia biomarkers have poor prognosis except for patients with human papilloma virus-associated or VHL-associated cancers. Therapeutic targeting of hypoxia is emerging; however, it is still in its nascent stage, with increasing clinical trials hypoxia is set to emerge as an attractive therapeutic target in HNC.

Identifiants

pubmed: 38200568
doi: 10.1186/s12957-023-03284-3
pii: 10.1186/s12957-023-03284-3
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

18

Informations de copyright

© 2024. The Author(s).

Références

Zhong NN, Wang HQ, Huang XY, Li ZZ, Cao LM, Huo FY, Liu B, Bu LL. Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives. Semin Cancer Biol. 2023;95:52–74. https://doi.org/10.1016/j.semcancer.2023.07.002 .
Mughees M, Sengupta A, Khowal S, Wajid S. Mechanism of tumour microenvironment in the progression and development of oral cancer. Mol Biol Rep. 2021;48(2):1773–86.
pubmed: 33492572
Bose P, Brockton NT, Dort JC. Head and neck cancer: from anatomy to biology. Int J Cancer. 2013;133(9):2013–20234.
pubmed: 23417723
Luoto KR, Kumareswaran R, Bristow RG. Tumor hypoxia as a driving force in genetic instability. Genome Integr. 2013;4(1):5. https://doi.org/10.1186/2041-9414-4-5 .
Kutova OM, Pospelov AD, Balalaeva IV. The multifaceted role of connexins in tumor microenvironment initiation and maintenance. Biology. 2023;12(2):204.
pubmed: 36829482 pmcid: 9953436
Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2(1):38–47.
pubmed: 11902584
Kumar P. Impact of anemia in patients with head and neck cancer. Oncologist. 2000;5(Suppl 2):13–8.
pubmed: 10896324
Dietl B, Marienhagen J, Schafer C, Kolbl O. The prognostic value of anemia at different treatment times in patients with locally advanced head and neck cancer treated with surgery and postoperative radiotherapy. Clin Oncol. 2007;19(4):228–33.
van de Pol SM, Doornaert PA, de Bree R, Leemans CR, Slotman BJ, Langendijk JA. The significance of anemia in squamous cell head and neck cancer treated with surgery and postoperative radiotherapy. Oral Oncol. 2006;42(2):131–8.
pubmed: 16146705
Littlewood TJ. The impact of hemoglobin levels on treatment outcomes in patients with cancer. Semin Oncol. 2001;28(2 Suppl 8):49–53.
pubmed: 11395853
Huang M, Chen Q, Xiao J, Yao T, Bian L, Liu C, Lin Z. Overexpression of hypoxia-inducible factor-1alpha is a predictor of poor prognosis in cervical cancer: a clinicopathologic study and a meta-analysis. Int J Gynecol Cancer. 2014;24(6):1054–64.
pubmed: 24978711
Vaupel P, Thews O, Mayer A, Hockel S, Hockel M. Oxygenation status of gynecologic tumors: what is the optimal hemoglobin level? Strahlenther Onkol. 2002;178(12):727–31.
pubmed: 12491062
Knocke T-H, Weitmann H-D, Feldmann H-J, Selzer E, Pötter R. Intratumoral pO
pubmed: 10665785
Bhide SA, Ahmed M, Rengarajan V, Powell C, Miah A, Newbold K, Nutting CM, Harrington KJ. Anemia during sequential induction chemotherapy and chemoradiation for head and neck cancer: the impact of blood transfusion on treatment outcome. Int J Radiat Oncol Biol Phys. 2009;73(2):391–8.
pubmed: 18692326
Hoff CM, Lassen P, Eriksen JG, Hansen HS, Specht L, Overgaard M, Grau C, Johansen J, Bentzen J, Andersen L, Evensen JF, Overgaard J. Does transfusion improve the outcome for HNSCC patients treated with radiotherapy? - results from the randomized DAHANCA 5 and 7 trials. Acta Oncol. 2011;50(7):1006–14.
pubmed: 21790306
Winter SC, Shah KA, Campo L, Turley H, Leek R, Corbridge RJ, ... Harris AL. Relation of erythropoietin and erythropoietin receptor expression to hypoxia and anemia in head and neck squamous cell carcinoma. Clin Cancer Res. 2005; 11(21): 7614–7620.
Overgaard J, Nielsen JE, Grau C. Effect of carboxyhemoglobin on tumor oxygen unloading capacity in patients with squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 1992;22(3):407–10.
pubmed: 1735669
Siemann DW, Hill RP, Bush RS. Smoking: the influence of carboxyhemoglobin (HbCO) on tumor oxygenation and response to radiation. Int J Radiat Oncol Biol Phys. 1978;4(7–8):657–62.
pubmed: 711537
Grau C, Horsman MR, Overgaard J. Influence of carboxyhemoglobin level on tumor growth, blood flow, and radiation response in an experimental model. Int J Radiat Oncol Biol Phys. 1992;22(3):421–4.
pubmed: 1735672
Zhou JY, Jiang ZA, Zhao CY, Zhen Z, Wang W, Nanji AA. Long-term binge and escalating ethanol exposure causes necroinflammation and fibrosis in rat liver. Alcohol Clin Exp Res. 2013;37(2):213–22.
pubmed: 23009062
Lieber CS, Baraona E, Hernandez-Munoz R, Kubota S, Sato N, Kawano S, Matsumura T, Inatomi N. Impaired oxygen utilization. A new mechanism for the hepatotoxicity of ethanol in sub-human primates. J Clin Investig. 1989;83(5):1682–90.
pubmed: 2708529 pmcid: 303877
Reidy J, McHugh E, Stassen LF. A review of the relationship between alcohol and oral cancer. The surgeon. 2011;9(5):278–83.
pubmed: 21843823
Zakhari S. Overview: how is alcohol metabolized by the body? Alcohol Res Health. 2006;29(4):245.
pubmed: 17718403 pmcid: 6527027
Valli A, Rodriguez M, Moutsianas L, Fischer R, Fedele V, Huang HL, ... Kessler B. Hypoxia induces a lipogenic cancer cell phenotype via HIF1α-dependent and-independent pathways. Oncotarget. 2015; 6(4): 1920.
Nakamura M, Bodily JM, Beglin M, Kyo S, Inoue M, Laimins LA. Hypoxia-specific stabilization of HIF-1alpha by human papillomaviruses. Virology. 2009;387(2):442–8.
pubmed: 19321184
Rodolico V, Arancio W, Amato MC, Aragona F, Cappello F, Di Fede O, Pannone G, Casmpisi G. Hypoxia-inducible factor-1 alpha expression is increased in infected positive HPV16 DNA oral squamous cell carcinoma and positively associated with HPV16 E7 oncoprotein. Infect Agents Cancer. 2011;6(1):18.
Bogusiak K, KoBos J. The role of human papillomavirus infection in the head and neck region and methods for its detection. Pol J Pathol. 2014;65(1):1–14.
pubmed: 25119003
Baruah P, Lee M, Wilson POG, Odutoye T, Williamson P, Hyde N, Kaski JC, Dumitriu IE. Impact of p16 status on pro- and anti-angiogenesis factors in head and neck cancers. Br J Cancer. 2015;113:653–9. https://doi.org/10.1038/bjc.2015.251 .
doi: 10.1038/bjc.2015.251 pubmed: 26171937 pmcid: 4647678
Chaudhary S, Ganguly K, Muniyan S, Pothuraju R, Sayed Z, Jones DT, Batra SK, Macha M. Immunometabolic alterations by HPV infection: new dimensions to head and neck cancer disparity. J Natl Cancer Inst. 2019;111:233–44. https://doi.org/10.1093/jnci/djy207 .
doi: 10.1093/jnci/djy207 pubmed: 30615137 pmcid: 6410958
Bamps M, Dok R, Nuyts S. The DNA damage response is differentially involved in HPV-positive and HPV-negative radioresistant head and neck squamous cell carcinoma. Cancers. 2021;13:3717. https://doi.org/10.3390/cancers13153717 .
doi: 10.3390/cancers13153717 pubmed: 34359617 pmcid: 8345136
Krupar R, Robold K, Gaag D, Spanier G, Kreutz M, Renner K, Hellerbrand C, Hofstaedter F, Bosserhoff A. Immunologic and metabolic characteristics of HPV-negative and HPV-positive head and neck squamous cell carcinomas are strikingly different. Virchows Arch. 2014;465:299–312. https://doi.org/10.1007/s00428-014-1630-6 .
doi: 10.1007/s00428-014-1630-6 pubmed: 25027580
Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45.
pubmed: 11229684
Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.
pubmed: 12490959 pmcid: 2803035
Fu Z, Mowday AM, Smaill JB, Hermans IF, Patterson AV. Tumour hypoxia-mediated immunosuppression: mechanisms and therapeutic approaches to improve cancer immunotherapy. Cells. 2021;10(5):1006.
pubmed: 33923305 pmcid: 8146304
Block KI, Gyllenhaal C, Lowe L, Amedei A, Amin AR, Amin A, Sidransky D. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol. 2015;35:S276–304.
Semenza GL. Regulation of mammalian O
pubmed: 10611972
Huang C, Sun Z, Sun Y, Chen X, Zhu X, Fan C, Liu B, Zhao Y, Zhang W. Association of increased ligand cyclophilin A and receptor CD147 with hypoxia, angiogenesis, metastasis and prognosis of tongue squamous cell carcinoma. Histopathology. 2012;60:793–803.
pubmed: 22320715
Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, Goldberg MA, Bunn HF, Livingston DM. An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA. 1996;93(23):12969–73. https://doi.org/10.1073/pnas.93.23.12969 .
Wang X, Schneider A. HIF-2alpha-mediated activation of the epidermal growth factor receptor potentiates head and neck cancer cell migration in response to hypoxia. Carcinogenesis. 2010;31(7):1202–10. https://doi.org/10.1093/carcin/bgq078 . (Epub 2010 Apr 15).
doi: 10.1093/carcin/bgq078 pubmed: 20395290 pmcid: 2893799
Anavi S, Hahn-Obercyger M, Madar Z, Tirosh O. Mechanism for HIF-1 activation by cholesterol under normoxia: a redox signaling pathway for liver damage. Free Radical Biol Med. 2014;71:61–9.
Shih SC, Claffey KP. Role of AP-1 and HIF-1 transcription factors in TGF-beta activation of VEGF expression. Growth Factors. 2001;19(1):19–34.
pubmed: 11678207
Zelzer E, Levy Y, Kahana C, Shilo BZ, Rubinstein M, Cohen B. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1α/ARNT. EMBO J. 1998;17(17):5085–94.
pubmed: 9724644 pmcid: 1170836
Eckert AW, Kappler M, Schubert J, Taubert H. Correlation of expression of hypoxia-related proteins with prognosis in oral squamous cell carcinoma patients. Oral Maxillofac Surg. 2012;16:189–96 [CrossRef].
pubmed: 22592457
Li L, Chen SH, Zhang Y, Yu CH, Li SD, Li YM. Is the hypoxia-inducible factor-1α mRNA expression activated by ethanol-induced injury the mechanism underlying alcoholic liver disease? Hepatobiliary Pancreat Dis Int. 2006;5:560–3.
pubmed: 17085342
Michaud SE, Menard C, Guy LG, Gennaro G, Rivard A. Inhibition of hypoxia-induced angiogenesis by cigarette smoke exposure: impairment of the HIF-1α/VEGF pathway. FASEB J. 2003;17:1150–2.
pubmed: 12709416
Chen MK, Chiou HL, Su SC, et al. The association between hypoxia-inducible factor-1alpha gene polymorphisms and increased susceptibility to oral cancer. Oral Oncol. 2009;45:e222–6.
pubmed: 19717330
Kang FW, Gao Y, Que L, Sun J, Wang ZL. Hypoxia-inducible factor-1α overexpression indicates poor clinical outcomes in tongue squamous cell carcinoma. Exp Ther Med. 2013;5:112–8.
pubmed: 23251251
Beasley NJ, Leek R, Alam M, Turley H, Cox GJ, Gatter K, Millard P, Fuggle S, Harris AL. Hypoxia-inducible factors HIF-1alpha and HIF-2alpha in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res. 2002;62(9):2493–7.
pubmed: 11980639
Fillies T, Werkmeister R, van Diest PJ, Brandt B, Joos U, Berger H. HIF1-α overexpression indicates a good prognosis in early-stage squamous cell carcinomas of the oral floor. BMC Cancer. 2005;5:84.
pubmed: 16035955 pmcid: 1190162
dos Santos M, Mercante AM, Louro ID, Goncalves AJ, de Carvalho MB, da Silva EH, da Silva AM. HIF1α expression predicts survival of patients with squamous cell carcinoma of the oral cavity. PLoS ONE. 2012;7:18.
Lin W, Yin CY, Yu Q, Zhou SH, Chai L, Fan J, Wang WD. Expression of glucose transporter-1, hypoxia inducible factor-1α, and beclin-1 in head and neck cancer and their implication. Int J Clin Exp Pathol. 2018;11(7):3708–17.
pubmed: 31949754 pmcid: 6962823
Swartz JE, Pothen AJ, Stegeman I, Willems SM, Grolman W. Clinical implications of hypoxia biomarker expression in head and neck squamous cell carcinoma: a systematic review. Cancer Med. 2015;4(7):1101–16. https://doi.org/10.1002/cam4.460 . (Epub 2015 Apr 27).
doi: 10.1002/cam4.460 pubmed: 25919147 pmcid: 4529348
Eckert AW, Schutze A, Lautner MHW, Taubert H, Schubert J, Bilkenroth U. HIF-1alpha is a prognostic marker in oral squamous cell carcinomas. Int J Biol Markers. 2010;25:87–92.
pubmed: 20544685
Watanabe S, Kato M, Kotani I, Ryoke K, Hayashi K. Lymphatic vessel density and vascular endothelial growth factor expression in squamous cell carcinomas of lip and oral cavity: a clinicopathological analysis with immunohistochemistry using antibodies to D2–40. VEGF-C and VEGF-D Yonago Acta Med. 2013;56:29–37.
pubmed: 24031149
Shang ZJ, Li JR, Li ZB. Circulating levels of vascular endothelial growth factor in patients with oral squamous cell carcinoma. Int J Oral Maxillofac Surg. 2002;31(5):495–8.
pubmed: 12418564
Kyzas PA, Stefanou D, Batistatou A, Agnantis NJ. Hypoxia-induced tumor angiogenic pathway in head and neck cancer: an in vivo study. Cancer Lett. 2005;225(2):297–304.
pubmed: 15978334
Mohamed KM, Le A, Duong H, Wu Y, Zhang Q, Messadi DV. Correlation between VEGF and HIF-1alpha expression in human oral squamous cell carcinoma. Exp Mol Pathol. 2004;76(2):143–52.
pubmed: 15010293
Shang ZJ, Li ZB, Li JRVEGF. is up-regulated by hypoxic stimulation and related to tumour angiogenesis and severity of disease in oral squamous cell carcinoma: in vitro and in vivo studies. Int J Maxillofac Surg. 2006;35(6):533–8.
Utispan K, Koontongkaew S. Mucin 1 regulates the hypoxia response in head and neck cancer cells. J Pharmacol Sci. 2021;147(4):331–9. https://doi.org/10.1016/j.jphs.2021.08.007 . (Epub 2021 Aug 24 PMID: 34663515).
doi: 10.1016/j.jphs.2021.08.007 pubmed: 34663515
Le X, Nilsson M, Goldman J, Reck M, Nakagawa K, Kato T, Ares LP, Frimodt-Moller B, Wolff K, Visseren-Grul C, Heymach JV, Garon EB. Dual EGFR-VEGF pathway inhibition: a promising strategy for patients with EGFR-mutant NSCLC. J Thorac Oncol. 2021;16(2):205–15. https://doi.org/10.1016/j.jtho.2020.10.006 . (Epub 2020 Oct 20).
doi: 10.1016/j.jtho.2020.10.006 pubmed: 33096270
Hsu HW, Wall NR, Hsueh CT, Kim S, Ferris RL, Chen CS, Mirshahidi S. Combination antiangiogenic therapy and radiation in head and neck cancers. Oral Oncol. 2014;50(1):19–26. https://doi.org/10.1016/j.oraloncology.2013.10.003 . (Epub 2013 Oct 23).
doi: 10.1016/j.oraloncology.2013.10.003 pubmed: 24269532
Batta N, Pandey M. Mutational spectrum of tobacco associated oral squamous carcinoma and its therapeutic significance. World J Surg Oncol. 2019;17:1–2.
Sethi N, Kikuchi O, McFarland J, Zhang Y, Chung M, Kafker N, Islam M, Lampson B, Chakraborty A, Kaelin WG Jr, Bass AJ. Mutant p53 induces a hypoxia transcriptional program in gastric and esophageal adenocarcinoma. JCI Insight. 2019;4(15): e128439. https://doi.org/10.1172/jci.insight.128439 .
doi: 10.1172/jci.insight.128439 pubmed: 31391338 pmcid: 6693823
Norikane T, Yamamoto Y, Maeda Y, Kudomi N, Matsunaga T, Haba R, Iwasaki A, Hoshikawa H, Nishiyama Y. Correlation of (18)F-fluoromisonidazole PET findings with HIF-1α and p53 expressions in head and neck cancer: comparison with (18)F-FDG PET. Nucl Med Commun. 2014;35(1):30–5. https://doi.org/10.1097/MNM.0000000000000010 .
doi: 10.1097/MNM.0000000000000010 pubmed: 24121312
Surov A, Meyer HJ, Höhn AK, Winter K, Sabri O, Purz S. Associations between [18F]FDG-PET and complex histopathological parameters including tumor cell count and expression of KI 67, EGFR, VEGF, HIF-1α, and p53 in head and neck squamous cell carcinoma. Mol Imaging Biol. 2019;21(2):368–74. https://doi.org/10.1007/s11307-018-1223-x . (PMID: 29931433).
doi: 10.1007/s11307-018-1223-x pubmed: 29931433
O’Neill WQ, Xie X, Gui S, Yu H, Davenport J, Cartwright T, Storl-Desmond M, Ryu E, Chan ER, Cao S, Fu P, Teknos TN, Pan Q. Repositioning fenofibrate to reactivate p53 and reprogram the tumor-immune microenvironment in HPV+ head and neck squamous cell carcinoma. Cancers (Basel). 2022;14(2):282. https://doi.org/10.3390/cancers14020282 .
doi: 10.3390/cancers14020282 pubmed: 35053444 pmcid: 8773501
Cabanillas R, Rodrigo JP, Secades P, Astudillo A, Nieto CS, Chiara MD. The relation between hypoxia-inducible factor (HIF)-1alpha expression with p53 expression and outcome in surgically treated supraglottic laryngeal cancer. J Surg Oncol. 2009;99(6):373–8. https://doi.org/10.1002/jso.21243 . (PMID: 19226532).
doi: 10.1002/jso.21243 pubmed: 19226532
Sorensen DM, Lewark TM, Haney JL, Meyers AD, Krause G, Franklin WA. Absence of p53 mutations in squamous carcinomas of the tongue in nonsmoking and nondrinking patients younger than 40 years. Arch, Otolaryngol Head Neck Surg. 1997;123(5):503–6.
pubmed: 9158397
Hedback N, Jensen DH, Specht L, Fiehn AM, Therkildsen MH, Friis-Hansen L, Dabelsteen E, von Buchwald C. MiR-21 expression in the tumor stroma of oral squamous cell carcinoma: an independent biomarker of disease-free survival. PLoS ONE. 2014;9(4): e95193.
pubmed: 24755828 pmcid: 3995812
Chen D, Cabay RJ, Jin Y, Wang A, Lu Y, Shah-Khan M, Zhou X. MicroRNA deregulations in head and neck squamous cell carcinomas. Journal of oral & maxillofacial research. 2013;4(1): e2.
Zhu G, Cao B, Liang X, Li L, Hao Y, Meng W, He C, Wang L, Li L. Small extracellular vesicles containing miR-192/215 mediate hypoxia-induced cancer-associated fibroblast development in head and neck squamous cell carcinoma. Cancer Lett. 2021;28(506):11–22. https://doi.org/10.1016/j.canlet.2021.01.006 . (Epub 2021 Feb 25).
doi: 10.1016/j.canlet.2021.01.006
Fu X, Han Y, Wu Y, Zhu X, Lu X, Mao F, Wang X, He X, Zhao Y, Zhao Y. Prognostic role of microRNA-21 in various carcinomas: a systematic review and meta-analysis. Eur J Clin Invest. 2011;41(11):1245–53.
pubmed: 21521185
Ye B, Duan Y, Zhou M, Wang Y, Lai Q, Yue K, Cao J, Wu Y, Wang X, Jing C. Hypoxic tumor-derived exosomal miR-21 induces cancer-associated fibroblast activation to promote head and neck squamous cell carcinoma metastasis. Cell Signal. 2023;108: 110725. https://doi.org/10.1016/j.cellsig.2023.110725 . (Epub 2023 May 23).
doi: 10.1016/j.cellsig.2023.110725 pubmed: 37230199
Kao SY, Tsai MM, Wu CH, Chen JJ, Tseng SH, Lin SC, Chang KW. Co-targeting of multiple microRNAs on factor-Inhibiting hypoxia-Inducible factor gene for the pathogenesis of head and neck carcinomas. Head Neck. 2016;38(4):522–8. https://doi.org/10.1002/hed.23912 . (Epub 2015 Jun 16).
doi: 10.1002/hed.23912 pubmed: 25351569
Ivan M, Huang X. miR-210: fine-tuning the hypoxic response. Adv Exp Med Biol. 2014;772:205–27.
pubmed: 24272361 pmcid: 4515752
Gee HE, Camps C, Buffa FM, Patiar S, Winter SC, Betts G, Homer J, Corbridge R, Cox G, West CM, Ragoussis J, Harris AL. hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer. 2010;116(9):2148–58.
pubmed: 20187102
Ho AS, Huang X, Cao H, Christman-Skieller C, Bennewith K, Le QT, Koong AC. Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl Oncol. 2010;3(2):109–13. https://doi.org/10.1593/tlo.09256 .
doi: 10.1593/tlo.09256 pubmed: 20360935 pmcid: 2847318
Powell BH, Turchinovich A, Wang Y, Gololobova O, Buschmann D, Zeiger MA, Umbricht CB, Witwer KW. miR-210 expression is strongly hypoxia-induced in anaplastic thyroid cancer cell lines and is associated with extracellular vesicles and argonaute-2. Int J Mol Sci. 2023;24(5):4507. https://doi.org/10.3390/ijms24054507 .
doi: 10.3390/ijms24054507 pubmed: 36901936 pmcid: 10002857
Merlo A, de Quirós SB, de Santa-María IS, Pitiot AS, Balbín M, Astudillo A, Scola B, Arístegui M, Quer M, Suarez C, Chiara MD. Identification of somatic VHL gene mutations in sporadic head and neck paragangliomas in association with activation of the HIF-1α/miR-210 signaling pathway. J Clin Endocrinol Metab. 2013;98(10):E1661–6. https://doi.org/10.1210/jc.2013-1636 . (Epub 2013 Jul 31).
doi: 10.1210/jc.2013-1636 pubmed: 23902947
Merlo A, de Quiros SB, Secades P, Zambrano I, Balbín M, Astudillo A, Scola B, Arístegui M, Suarez C, Chiara MD. Identification of a signaling axis HIF-1α/microRNA-210/ISCU independent of SDH mutation that defines a subgroup of head and neck paragangliomas. J Clin Endocrinol Metab. 2012;97(11):E2194–200. https://doi.org/10.1210/jc.2012-2410 . (Epub 2012 Sep 13).
doi: 10.1210/jc.2012-2410 pubmed: 22977270
Sáenz-de-Santa-María I, Bernardo-Castiñeira C, Secades P, Bernaldo-de-Quirós S, Rodrigo JP, Astudillo A, Chiara MD. Clinically relevant HIF-1α-dependent metabolic reprogramming in oropharyngeal squamous cell carcinomas includes coordinated activation of CAIX and the miR-210/ISCU signaling axis, but not MCT1 and MCT4 upregulation. Oncotarget. 2017;8(8):13730–46. https://doi.org/10.18632/oncotarget.14629 .
doi: 10.18632/oncotarget.14629 pubmed: 28099149 pmcid: 5355133
Li C, Zhou X, Wang Y, Jing S, Yang C, Sun G, Liu Q, Cheng Y, Wang L. miR-210 regulates esophageal cancer cell proliferation by inducing G2/M phase cell cycle arrest through targeting PLK1. Mol Med Rep. 2014;10(4):2099–104. https://doi.org/10.3892/mmr.2014.2416 . (Epub 2014 Jul 23).
doi: 10.3892/mmr.2014.2416 pubmed: 25069478
Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33:207–14.
pubmed: 22398146 pmcid: 3437546
Kang FW, Que L, Wu M, Wang ZL, Sun J. Effects of trichostatin A on HIF-1α and VEGF expression in human tongue squamous cell carcinoma cells in vitro. Oncol Rep. 2012;28:193–9.
pubmed: 22552321
Jung CW, Jo JR, Lee SH, Park YK, Jung NK, Song DK, Bae J, Nam KY, Ha JS, Park IS, Park GY, Jang BC, Park JW. Anticancer properties of glucosamine-hydrochloride in YD-8 human oral cancer cells: induction of the caspase-dependent apoptosis and down-regulation of HIF-1α. Toxicol In Vitro. 2012;26:42–50.
pubmed: 22020377
Chen W, Hill H, Christie A, Kim MS, Holloman E, Pavia-Jimenez A, Homayoun F, Ma Y, Patel N, Yell P, Hao G, Yousuf Q, Joyce A, Pedrosa I, Geiger H, Zhang H, Chang J, Gardner KH, Bruick RK, Reeves C, Hwang TH, Courtney K, Frenkel E, Sun X, Zojwalla N, Wong T, Rizzi JP, Wallace EM, Josey JA, Xie Y, Xie XJ, Kapur P, McKay RM, Brugarolas J. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016;539(7627):112–7. https://doi.org/10.1038/nature19796 . (Epub 2016 Sep 5).
doi: 10.1038/nature19796 pubmed: 27595394 pmcid: 5340502
Chang H, Shyu KG, Lee CC, Tsai SC, Wang BW, Hsien LY, Lin S. GL331 inhibits HIF-1alpha expression in a lung cancer model. Biochem Biophys Res Commun. 2003;302:95–100. https://doi.org/10.1016/S0006-291X(03)00111-6 .
doi: 10.1016/S0006-291X(03)00111-6 pubmed: 12593853
Pang Y, Yang C, Schovanek J, Wang H, Bullova P, Caisova V, Gupta G, Wolf KI, Semenza GL, Zhuang Z, et al. Anthracyclines suppress pheochromocytoma cell characteristics, including metastasis, through inhibition of the hypoxia signaling pathway. Oncotarget. 2017;8:22313–24.
pubmed: 28423608 pmcid: 5410225
Gkotinakou IM, Kechagia E, Pazaitou-Panayiotou K, Mylonis I, Liakos P, Tsakalof A. Calcitriol suppresses HIF-1 and HIF-2 transcriptional activity by reducing HIF-1/2alpha protein levels via a VDR-independent mechanism. Cells. 2020;9:11. https://doi.org/10.3390/cells9112440 .
doi: 10.3390/cells9112440
Rapisarda A, Zalek J, Hollingshead M, Braunschweig T, Uranchimeg B, Bonomi CA, Borgel SD, Carter JP, Hewitt SM, Shoemaker RH, et al. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res. 2004;64:6845–8. https://doi.org/10.1158/0008-5472.CAN-04-2116 .
doi: 10.1158/0008-5472.CAN-04-2116 pubmed: 15466170
Thomas SL, Zhong D, Zhou W, Malik S, Liotta D, Snyder JP, Hamel E, Giannakakou P. EF24, a novel curcumin analog, disrupts the microtubule cytoskeleton and inhibits HIF-1. Cell Cycle. 2008;7:2409–17. https://doi.org/10.4161/cc.6410 .
doi: 10.4161/cc.6410 pubmed: 18682687
Terzuoli E, Puppo M, Rapisarda A, Uranchimeg B, Cao L, Burger AM, Ziche M, Melillo G. Aminoflavone, a ligand of the aryl hydrocarbon receptor, inhibits HIF-1alpha expression in an AhR-independent fashion. Cancer Res. 2010;70:6837–48. https://doi.org/10.1158/0008-5472.CAN-10-1075 .
doi: 10.1158/0008-5472.CAN-10-1075 pubmed: 20736373 pmcid: 2932848
Cheng T, Grasse L, Shah J, Chandra J. Panobinostat, a pan-histone deacetylase inhibitor: rationale for and application to treatment of multiple myeloma. Drugs Today. 2015;51:491–504. https://doi.org/10.1358/dot.2015.51.8.2362311 .
doi: 10.1358/dot.2015.51.8.2362311
Huang YC, Huang FI, Mehndiratta S, Lai SC, Liou JP, Yang CR. Anticancer activity of MPT0G157, a derivative of indolylbenzenesulfonamide, inhibits tumor growth and angiogenesis. Oncotarget. 2015;6:18590–601. https://doi.org/10.18632/oncotarget.4068 .
doi: 10.18632/oncotarget.4068 pubmed: 26087180 pmcid: 4621912
Mann BS, Johnson JR, He K, Sridhara R, Abraham S, Booth BP, Verbois L, Morse DE, Jee JM, Pope S, et al. Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clin Cancer Res. 2007;13:2318–22. https://doi.org/10.1158/1078-0432.CCR-06-2672 .
doi: 10.1158/1078-0432.CCR-06-2672 pubmed: 17438089
Prince HM, Dickinson M. Romidepsin for cutaneous T-cell lymphoma. Clin Cancer Res. 2012;18:3509–15. https://doi.org/10.1158/1078-0432.CCR-11-3144 .
doi: 10.1158/1078-0432.CCR-11-3144 pubmed: 22535155
Poole RM. Belinostat: first global approval. Drugs. 2014;74:1543–54. https://doi.org/10.1007/s40265-014-027 .
doi: 10.1007/s40265-014-027 pubmed: 25134672
Ning ZQ, Li ZB, Newman MJ, Shan S, Wang XH, Pan DS, Zhang J, Dong M, Du X, Lu XP. Chidamide (CS055/HBI-8000): A new histone deacetylase inhibitor of the benzamide class with antitumor activity and the ability to enhance immune cell-mediated tumor cell cytotoxicity. Cancer Chemother Pharmacol. 2012;69:901–9. https://doi.org/10.1007/s00280-011-1766-x .
doi: 10.1007/s00280-011-1766-x pubmed: 22080169
Infantino V, Santarsiero A, Convertini P, Todisco S, Iacobazzi V. Cancer cell metabolism in hypoxia: role of HIF-1 as key regulator and therapeutic target. Int J Mol Sci. 2021;22(11):5703. https://doi.org/10.3390/ijms22115703 .
doi: 10.3390/ijms22115703 pubmed: 34071836 pmcid: 8199012
Pham E, Birrer MJ, Eliasof S, Garmey EG, Lazarus D, Lee CR, Man S, Matulonis UA, Peters CG, Xu P, et al. Translational impact of nanoparticle-drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer. Clin Cancer Res. 2015;21:808–18. https://doi.org/10.1158/1078-0432.CCR-14-2810 .
doi: 10.1158/1078-0432.CCR-14-2810 pubmed: 25524310
Koh MY, Spivak-Kroizman T, Venturini S, Welsh S, Williams RR, Kirkpatrick DL, Powis G. Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1alpha. Mol Cancer Ther. 2008;7:90–100. https://doi.org/10.1158/1535-7163.MCT-07-0463 .
doi: 10.1158/1535-7163.MCT-07-0463 pubmed: 18202012
Befani CD, Vlachostergios PJ, Hatzidaki E, Patrikidou A, Bonanou S, Simos G, Papandreou CN, Liakos P. Bortezomib represses HIF-1alpha protein expression and nuclear accumulation by inhibiting both PI3K/Akt/TOR and MAPK pathways in prostate cancer cells. J Mol Med. 2012;90:45–54. https://doi.org/10.1007/s00109-011-0805-8 .
doi: 10.1007/s00109-011-0805-8 pubmed: 21909688
Harada K, Ferdous T, Itashiki Y, Takii M, Mano T, Mori Y, Ueyama Y. Cepharanthine inhibits angiogenesis and tumorigenicity of human oral squamous cell carcinoma cells by suppressing expression of vascular endothelial growth factor and interleukin-8. Int J Oncol. 2009;35:1025–35.
pubmed: 19787256
Myoung H, Hong SD, Kim YY, Hong SP, Kim MJ. Evaluation of the antitumor and antiangiogenic effect of paclitaxel and thalidomide on the xenotransplanted oral squamous cell carcinoma. Cancer Lett. 2001;163:191–200.
pubmed: 11165754
Argiris A, Karamouzis MV, Gooding WE, et al. Phase II trial of pemetrexed and bevacizumab in patients with recurrent or metastatic head and neck cancer. J Clin Oncol. 2011;29:1140–5.
pubmed: 21343546 pmcid: 3083869
Fury MG, Lee NY, Sherman E, et al. A phase 2 study of bevacizumab with cisplatin plus intensity-modulated radiation therapy for stage III/IVB head and neck squamous cell cancer. Cancer. 2012;118:5008–14.
pubmed: 22415650
Hainsworth JD, Spigel DR, Greco FA, et al. Combined modality treatment with chemotherapy, radiation therapy, bevacizumab, and erlotinib in patients with locally advanced squamous carcinoma of the head and neck: a phase II trial of the Sarah Cannon oncology research consortium. Cancer J. 2011;17:267–72.
pubmed: 21952273
Yoo DS, Kirkpatrick JP, Craciunescu O, et al. Prospective trial of synchronous bevacizumab, erlotinib, and concurrent chemoradiation in locally advance head and neck cancer. Clin Cancer Res. 2012;18:1404–14.
pubmed: 22253412
Salama JK, Haraf DJ, Stenson KM, et al. A randomized phase II study of 5-fluorouracil, hydroxyurea, and twice-daily radiotherapy compared with bevacizumab plus 5-fluorouracil, hydroxyurea, and twice-daily radiotherapy for intermediate-stage and T4N0–1 head and neck cancers. Ann Oncol. 2011;22:2304–9.
pubmed: 21330337
Elser C, Siu LL, Winquist E, et al. Phase II trial of sorafenib in patients with recurrent or metastatic squamous cell carcinoma of the head and neck ornasopharyngeal carcinoma. J Clin Oncol. 2007;25:3766.
pubmed: 17704426
Swiecicki PL, Spector M, Worden FP. Axitinib in the treatment of head and neck malignancies. Curr Clin Pharmacol. 2016;11(2):72–6. https://doi.org/10.2174/1574884711666160518120622 .
doi: 10.2174/1574884711666160518120622 pubmed: 27188575

Auteurs

Pooja Singh (P)

Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India. ps1749962@gmail.com.

Monika Rajput (M)

Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.

Manoj Pandey (M)

Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.

Classifications MeSH