KDS2010, a reversible MAO-B inhibitor, extends the lifetime of neural probes by preventing glial scar formation.
MAO-B inhibitor
astrogliosis
glial scar
implantable neural probes
Journal
Glia
ISSN: 1098-1136
Titre abrégé: Glia
Pays: United States
ID NLM: 8806785
Informations de publication
Date de publication:
10 Jan 2024
10 Jan 2024
Historique:
revised:
07
12
2023
received:
04
07
2023
accepted:
19
12
2023
medline:
11
1
2024
pubmed:
11
1
2024
entrez:
11
1
2024
Statut:
aheadofprint
Résumé
Implantable neural probes have been extensively utilized in the fields of neurocircuitry, systems neuroscience, and brain-computer interface. However, the long-term functionality of these devices is hampered by the formation of glial scar and astrogliosis at the surface of electrodes. In this study, we administered KDS2010, a recently developed reversible MAO-B inhibitor, to mice through ad libitum drinking in order to prevent glial scar formation and astrogliosis. The administration of KDS2010 allowed long-term recordings of neural signals with implantable devices, which remained stable over a period of 6 months and even restored diminished neural signals after probe implantation. KDS2010 effectively prevented the formation of glial scar, which consists of reactive astrocytes and activated microglia around the implant. Furthermore, it restored neural activity by disinhibiting astrocytic MAO-B dependent tonic GABA inhibition induced by astrogliosis. We suggest that the use of KDS2010 is a promising approach to prevent glial scar formation around the implant, thereby enabling long-term functionality of neural devices.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministry of Science and ICT, South Korea
ID : NRF-2019M3E5D2A01063814
Organisme : Ministry of Science and ICT, South Korea
ID : NRF-2022M3E5E8081196
Organisme : Institute for Basic Science
ID : IBS- R001-D2
Organisme : National Research Foundation of Korea
ID : NRF-2018R1A6A1A03023718
Informations de copyright
© 2024 Wiley Periodicals LLC.
Références
Buzsáki, G. (2004). Large-scale recording of neuronal ensembles. Nature Neuroscience, 7, 446-451.
Chae, U., Shin, H., Choi, N., Ji, M. J., Park, H. M., Lee, S. H., Woo, J., Cho, Y., Kim, K., Yang, S., Nam, M. H., Yu, H. Y., & Cho, I. J. (2021). Bimodal neural probe for highly co-localized chemical and electrical monitoring of neural activities in vivo. Biosensors and Bioelectronics, 191, 113473.
Chun, H., An, H., Lim, J., Woo, J., Lee, J., Ryu, H., & Lee, C. J. (2018). Astrocytic proBDNF and tonic GABA distinguish active versus reactive astrocytes in hippocampus. Experimental Neurobiology, 27, 155-170.
Chun, H., Im, H., Kang, Y. J., Kim, Y., Shin, J. H., Won, W., Lim, J., Ju, Y., Park, Y. M., Kim, S., Lee, S. E., Lee, J., Woo, J., Hwang, Y., Cho, H., Jo, S., Park, J. H., Kim, D., Kim, D. Y., … Lee, C. J. (2020). Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer's disease via H2O2−production. Nature Neuroscience, 23, 1555-1566.
Chun, H., Lim, J., Park, K. D., & Lee, C. J. (2022). Inhibition of monoamine oxidase B prevents reactive astrogliosis and scar formation in stab wound injury model. Glia, 70, 354-367.
Fitzgerald, P. J., & Watson, B. O. (2019). In vivo electrophysiological recordings of the effects of antidepressant drugs. Experimental Brain Research, 237, 1593-1614.
Gaire, J., Lee, H. C., Hilborn, N., Ward, R., Regan, M., & Otto, K. J. (2018). The role of inflammation on the functionality of intracortical microelectrodes. Journal of Neural Engineering, 15, 066027.
Heo, J. Y., Nam, M. H., Yoon, H. H., Kim, J., Hwang, Y. J., Won, W., Woo, D. H., Lee, J. A., Park, H. J., Jo, S., Lee, M. J., Kim, S., Shim, J. E., Jang, D. P., Kim, K. I., Huh, S. H., Jeong, J. Y., Kowall, N. W., Lee, J., … Lee, C. J. (2020). Aberrant tonic inhibition of dopaminergic neuronal activity causes motor symptoms in animal models of Parkinson's disease. Current Biology, 30, 276-291. https://doi.org/10.1016/j.cub.2019.11.079
Kozai, T. D., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C., & Cui, X. T. (2015). Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chemical Neuroscience, 6, 48-67.
Kozai, T. D. Y., Langhals, N. B., Patel, P. R., Deng, X., Zhang, H., Smith, K. L., Lahann, J., Kotov, N. A., & Kipke, D. R. (2012). Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nature Materials, 11, 1065-1073.
Lee, Y., Shin, H., Lee, D., Choi, S., Cho, I. J., & Seo, J. (2021). A lubricated nonimmunogenic neural probe for acute insertion trauma minimization and long-term signal recording. Advanced Science, 8, 2100231.
Luan, L., Wei, X., Zhao, Z., Siegel, J. J., Potnis, O., Tuppen, C. A., Lin, S., Kazmi, S., Fowler, R. A., Holloway, S., Dunn, A. K., Chitwood, R. A., & Xie, C. (2017). Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Science Advances, 3, e1601966.
Marzo, A., Dal Bo, L., Monti, N. C., Crivelli, F., Ismaili, S., Caccia, C., Cattaneo, C., & Fariello, R. G. (2004). Pharmacokinetics and pharmacodynamics of safinamide, a neuroprotectant with antiparkinsonian and anticonvulsant activity. Pharmacological Research, 50, 77-85. https://doi.org/10.1016/j.phrs.2003.12.004
Nam, M.-H., Cho, J., Kwon, D. H., Park, J. Y., Woo, J., Lee, J. M., Lee, S., Ko, H. Y., Won, W., Kim, R. G., Song, H., Oh, S. J., Choi, J. W., Park, K. D., Park, E. K., Jung, H., Kim, H. S., Lee, M. C., Yun, M., … Kim, H. I. (2020). Excessive astrocytic GABA causes cortical hypometabolism and impedes functional recovery after subcortical stroke. Cell Reports, 32, 107861.
Obidin, N., Tasnim, F., & Dagdeviren, C. (2020). The future of neuroimplantable devices: A materials science and regulatory perspective. Advanced Materials, 32, 1901482.
Park, J.-H., Ju, Y. H., Choi, J. W., Song, H. J., Jang, B. K., Woo, J., Chun, H., Kim, H. J., Shin, S. J., Yarishkin, O., Jo, S., Park, M., Yeon, S. K., Kim, S., Kim, J., Nam, M. H., Londhe, A. M., Kim, J., Cho, S. J., … Park, K. D. (2019). Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer's disease. Science Advances, 5, eaav0316.
Paxinos, G., & Franklin, K. B. (2004). The mouse brain in stereotaxic coordinates. Gulf Professional Publishing.
Polikov, V. S., Tresco, P. A., & Reichert, W. M. (2005). Response of brain tissue to chronically implanted neural electrodes. Journal of Neuroscience Methods, 148, 1-18.
Sofroniew, M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends in Neurosciences, 32, 638-647.
Spataro, L., Dilgen, J., Retterer, S., Spence, A. J., Isaacson, M., Turner, J. N., & Shain, W. (2005). Dexamethasone treatment reduces astroglia responses to inserted neuroprosthetic devices in rat neocortex. Experimental Neurology, 194, 289-300.
Tordoff, M. G., Bachmanov, A. A., & Reed, D. R. (2007). Forty mouse strain survey of water and sodium intake. Physiology & Behavior, 91, 620-631. https://doi.org/10.1016/j.physbeh.2007.03.025
Williamson, A., Ferro, M., Leleux, P., Ismailova, E., Kaszas, A., Doublet, T., Quilichini, P., Rivnay, J., Rózsa, B., Katona, G., Bernard, C., & Malliaras, G. G. (2015). Localized neuron stimulation with organic electrochemical transistors on delaminating depth probes. Advanced Materials, 27, 4405-4410.
Wong, A. C. Y., Guo, C. X., Gupta, R., Housley, G. D., Thorne, P. R., & Vlajkovic, S. M. (2010). Post exposure administration of A1 adenosine receptor agonists attenuates noise-induced hearing loss. Hearing Research, 260, 81-88.
Zhong, Y., & Bellamkonda, R. V. (2007). Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Research, 1148, 15-27.