Universal Biomaterial-on-Chip: a versatile platform for evaluating cellular responses on diverse biomaterial substrates.


Journal

Journal of materials science. Materials in medicine
ISSN: 1573-4838
Titre abrégé: J Mater Sci Mater Med
Pays: United States
ID NLM: 9013087

Informations de publication

Date de publication:
11 Jan 2024
Historique:
received: 19 09 2023
accepted: 11 12 2023
medline: 11 1 2024
pubmed: 11 1 2024
entrez: 11 1 2024
Statut: epublish

Résumé

Microfluidics has emerged as a promising approach for assessing cellular behavior in vitro, providing more physiologically relevant cell culture environments with dynamic flow and shear stresses. This study introduces the Universal Biomaterial-on-Chip (UBoC) device, which enables the evaluation of cell response on diverse biomaterial substrates in a 3D-printed microfluidic device. The UBoC platform offers mechanical stimulation of the cells and monitoring of their response on diverse biomaterials, enabling qualitative and quantitative in vitro analysis both on- and off-chip. Cell adhesion and proliferation were assessed to evaluate the biocompatibility of materials with different physical properties, while mechanical stimulation was performed to investigate shear-dependent calcium signaling in pre-osteoblasts. Moreover, the applicability of the UBoC platform in creating more complex in vitro models by culturing multiple cell types was demonstrated, establishing a dynamic multicellular environment to investigate cellular interfaces and their significance in biological processes. Overall, the UBoC presents an adaptable tool for in vitro evaluation of cellular behavior, offering opportunities for studying various biomaterials and cell interactions in microfluidic environments.

Identifiants

pubmed: 38206428
doi: 10.1007/s10856-023-06771-x
pii: 10.1007/s10856-023-06771-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2

Subventions

Organisme : Vetenskapsrådet
ID : 2017-05051
Organisme : Göran Gustafssons Stiftelser
ID : 2126
Organisme : Magnus Bergvalls Stiftelse
ID : 2020-03659
Organisme : Knut och Alice Wallenbergs Stiftelse
ID : WAF 2016.0112

Informations de copyright

© 2023. The Author(s).

Références

Mestres G, Perez RA, D’Elía NL, Barbe L. Advantages of microfluidic systems for studying cell-biomaterial interactions—focus on bone regeneration applications. Biomed Phys Eng Express. 2019;5:032001. https://doi.org/10.1088/2057-1976/ab1033 .
doi: 10.1088/2057-1976/ab1033
Polacheck WJ, Li R, Uzel SGM, Kamm RD. Microfluidic platforms for mechanobiology. Lab Chip. 2013;13:2252–67. https://doi.org/10.1039/C3LC41393D .
doi: 10.1039/C3LC41393D
Lagus TP, Edd JF. A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics. J Phys Appl Phys. 2013;46:114005. https://doi.org/10.1088/0022-3727/46/11/114005 .
doi: 10.1088/0022-3727/46/11/114005
Wu Q, Liu J, Wang X, Feng L, Wu J, Zhu X. et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng OnLine. 2020;19:9. https://doi.org/10.1186/s12938-020-0752-0 .
doi: 10.1186/s12938-020-0752-0
Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011;21:745–54. https://doi.org/10.1016/j.tcb.2011.09.005 .
doi: 10.1016/j.tcb.2011.09.005
Barata D, van Blitterswijk C, Habibovic P. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics. Acta Biomater. 2016;34:1–20. https://doi.org/10.1016/j.actbio.2015.09.009 .
doi: 10.1016/j.actbio.2015.09.009
Hook AL, Anderson DG, Langer R, Williams P, Davies MC, Alexander MR. High throughput methods applied in biomaterial development and discovery. Biomaterials. 2010;31:187–98. https://doi.org/10.1016/j.biomaterials.2009.09.037 .
doi: 10.1016/j.biomaterials.2009.09.037
Dumont CM, Karande P, Thompson DM. Rapid assessment of migration and proliferation: a novel 3D high-throughput platform for rational and combinatorial screening of tissue-specific biomaterials. Tissue Eng Part C Methods. 2014;20:620–9. https://doi.org/10.1089/ten.tec.2013.0362 .
doi: 10.1089/ten.tec.2013.0362
Carter S-SD, Barbe L, Tenje M, Mestres G. Exploring microfluidics as a tool to evaluate the biological properties of a titanium alloy under dynamic conditions. Biomater Sci. 2020;8:6309–21. https://doi.org/10.1039/D0BM00964D .
doi: 10.1039/D0BM00964D
Atif AR, Pujari-Palmer M, Tenje M, Mestres G. A microfluidics-based method for culturing osteoblasts on biomimetic hydroxyapatite. Acta Biomater. 2021;127:327–37. https://doi.org/10.1016/j.actbio.2021.03.046 .
doi: 10.1016/j.actbio.2021.03.046
Kang JH, Kim YC, Park J-K. Analysis of pressure-driven air bubble elimination in a microfluidic device. Lab Chip. 2007;8:176–8. https://doi.org/10.1039/B712672G .
doi: 10.1039/B712672G
Skelley AM, Voldman J. An active bubble trap and debubbler for microfluidic systems. Lab Chip. 2008;8:1733–7. https://doi.org/10.1039/B807037G .
doi: 10.1039/B807037G
Sung JH, Shuler ML. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap. Biomed Microdevices. 2009;11:731–8. https://doi.org/10.1007/s10544-009-9286-8 .
doi: 10.1007/s10544-009-9286-8
Gustavsson J, Ginebra MP, Engel E, Planell J. Ion reactivity of calcium-deficient hydroxyapatite in standard cell culture media. Acta Biomater. 2011;7:4242–52. https://doi.org/10.1016/j.actbio.2011.07.016 .
doi: 10.1016/j.actbio.2011.07.016
Mestres G, Espanol M, Xia W, Persson C, Ginebra M-P, Ott MK. Inflammatory response to nano- and microstructured hydroxyapatite. PLOS ONE. 2015;10:e0120381. https://doi.org/10.1371/journal.pone.0120381 .
doi: 10.1371/journal.pone.0120381
Atif A-R, La̅cis U, Engqvist H, Tenje M, Bagheri S, Mestres G. Experimental characterization and mathematical modeling of the adsorption of proteins and cells on biomimetic hydroxyapatite. ACS Omega. 2022;7:908–20. https://doi.org/10.1021/acsomega.1c05540 .
doi: 10.1021/acsomega.1c05540
Gustavsson J, Ginebra MP, Planell J, Engel E. Osteoblast-like cellular response to dynamic changes in the ionic extracellular environment produced by calcium-deficient hydroxyapatite. J Mater Sci Mater Med. 2012;23:2509–20. https://doi.org/10.1007/s10856-012-4705-4 .
doi: 10.1007/s10856-012-4705-4
Sadowska JM, Guillem-Marti J, Espanol M, Stähli C, Döbelin N, Ginebra M-P. In vitro response of mesenchymal stem cells to biomimetic hydroxyapatite substrates: a new strategy to assess the effect of ion exchange. Acta Biomater. 2018;76:319–32. https://doi.org/10.1016/j.actbio.2018.06.025 .
doi: 10.1016/j.actbio.2018.06.025
Hokugo A, Takamoto T, Tabata Y. Preparation of hybrid scaffold from fibrin and biodegradable polymer fiber. Biomaterials. 2006;27:61–7. https://doi.org/10.1016/j.biomaterials.2005.05.030 .
doi: 10.1016/j.biomaterials.2005.05.030
Hinton PV, Genoud KJ, Early JO, O’Brien FJ, Kennedy OD. Impact of fluid flow shear stress on osteoblast differentiation and cross-talk with articular chondrocytes. Int J Mol Sci. 2022;23:9505. https://doi.org/10.3390/ijms23169505 .
doi: 10.3390/ijms23169505
Piekarski K, Munro M. Transport mechanism operating between blood supply and osteocytes in long bones. Nature. 1977;269:5623. https://doi.org/10.1038/269080a0 .
doi: 10.1038/269080a0
Li X, Kordsmeier J, Xiong J. New advances in osteocyte mechanotransduction. Curr Osteoporos Rep. 2021;19:101–6. https://doi.org/10.1007/s11914-020-00650-y .
doi: 10.1007/s11914-020-00650-y
Hung CT, Pollack SR, Reilly TM, Brighton CT. Real-time calcium response of cultured bone cells to fluid flow. Clin Orthop. 1995;313:256–69.
Sun X, McLamore E, Kishore V, Fites K, Slipchenko M, Porterfield DM. et al. Mechanical stretch induced calcium efflux from bone matrix stimulates osteoblasts. Bone. 2011;50:581–91.
doi: 10.1016/j.bone.2011.12.015
Jing D, Lu XL, Luo E, Sajda P, Leong PL, Guo XE. Spatiotemporal properties of intracellular calcium signaling in osteocytic and osteoblastic cell networks under fluid flow. Bone. 2013;53:531–40. https://doi.org/10.1016/j.bone.2013.01.008 .
doi: 10.1016/j.bone.2013.01.008
Ma S, Yang Y, Carnes DL, Kim K, Park S, Oh SH. et al. Effects of dissolved calcium and phosphorous on osteoblast responses. J Oral Implantol. 2005;31:61–7. https://doi.org/10.1563/0-742.1 .
doi: 10.1563/0-742.1
Jung G-Y, Park Y-J, Han J-S. Effects of HA released calcium ion on osteoblast differentiation. J Mater Sci Mater Med. 2010;21:1649–54. https://doi.org/10.1007/s10856-010-4011-y .
doi: 10.1007/s10856-010-4011-y
Liu H, et al. Piezo1 channels as force sensors in mechanical force-related chronic inflammation. Front Immunol. 2022;13:816149.
Malone AMD, Batra NN, Shivaram G, Kwon RY, You L, Kim CH. et al. The role of actin cytoskeleton in oscillatory fluid flow-induced signaling in MC3T3-E1 osteoblasts. Am J Physiol Cell Physiol. 2007;292:C1830–6. https://doi.org/10.1152/ajpcell.00352.2005 .
doi: 10.1152/ajpcell.00352.2005
Wu Y, Wang L, Zhao X, Hou S, Guo B, Ma PX. Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly. Biomaterials. 2016;104:18–31. https://doi.org/10.1016/j.biomaterials.2016.07.011 .
doi: 10.1016/j.biomaterials.2016.07.011
Yamazoe H, Okuyama T, Suzuki H, Fukuda J. Fabrication of patterned cell co-cultures on albumin-based substrate: applications for microfluidic devices. Acta Biomater. 2010;6:526–33. https://doi.org/10.1016/j.actbio.2009.07.036 .
doi: 10.1016/j.actbio.2009.07.036
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:672–82.
Ozdemir KG, Yilmaz H, Yilmaz S. In vitro evaluation of cytotoxicity of soft lining materials on L929 cells by MTT assay. J Biomed Mater Res B Appl Biomater. 2009;90:82–6. https://doi.org/10.1002/jbm.b.31256 .
doi: 10.1002/jbm.b.31256
Wang MO, Etheridge JM, Thompson JA, Vorwald CE, Dean D, Fisher JP. Evaluation of the in vitro cytotoxicity of cross-linked biomaterials. Biomacromolecules. 2013;14:1321–9. https://doi.org/10.1021/bm301962f .
doi: 10.1021/bm301962f
Franceschi RT, Iyer BS, Cui Y. Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J Bone Miner Res. 1994;9:843–54. https://doi.org/10.1002/jbmr.5650090610 .
doi: 10.1002/jbmr.5650090610

Auteurs

Abdul Raouf Atif (AR)

Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22, Uppsala, Sweden.

Morteza Aramesh (M)

Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22, Uppsala, Sweden. morteza.aramesh@angstrom.uu.se.

Sarah-Sophia Carter (SS)

Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22, Uppsala, Sweden.

Maria Tenje (M)

Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22, Uppsala, Sweden.

Gemma Mestres (G)

Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22, Uppsala, Sweden.

Classifications MeSH