Post-transcriptional regulation of myogenic transcription factors during muscle development and pathogenesis.
Muscle
MyoD
Myogenesis
mRNA stability
microRNA
Journal
Journal of muscle research and cell motility
ISSN: 1573-2657
Titre abrégé: J Muscle Res Cell Motil
Pays: Netherlands
ID NLM: 8006298
Informations de publication
Date de publication:
11 Jan 2024
11 Jan 2024
Historique:
received:
16
10
2023
accepted:
29
11
2023
medline:
11
1
2024
pubmed:
11
1
2024
entrez:
11
1
2024
Statut:
aheadofprint
Résumé
The transcriptional regulation of skeletal muscle (SKM) development (myogenesis) has been documented for over 3 decades and served as a paradigm for tissue-specific cell type determination and differentiation. Myogenic stem cells (MuSC) in embryos and adult SKM are regulated by the transcription factors Pax3 and Pax7 for their stem cell characteristics, while their lineage determination and terminal differentiation are both dictated by the myogenic regulatory factors (MRF) that comprise Mrf4, Myf5, Myogenin, and MyoD. The myocyte enhancer factor Mef2c is activated by MRF during terminal differentiation and collaborates with them to promote myoblast fusion and differentiation. Recent studies have found critical regulation of these myogenic transcription factors at mRNA level, including subcellular localization, stability, and translational regulation. Therefore, the regulation of Pax3/7, MRFs and Mef2c mRNAs by RNA-binding factors and non-coding RNAs (ncRNA), including microRNAs and long non-coding RNAs (lncRNA), will be the focus of this review and the impact of this regulation on myogenesis will be further addressed. Interestingly, the stem cell characteristics of MuSC has been found to be critically regulated by ncRNAs, implying the involvement of ncRNAs in SKM homeostasis and regeneration. Current studies have further identified that some ncRNAs are implicated in the etiology of some SKM diseases and can serve as valuable tools/indicators for prediction of prognosis. The roles of ncRNAs in the MuSC biology and SKM disease etiology will also be discussed in this review.
Identifiants
pubmed: 38206489
doi: 10.1007/s10974-023-09663-3
pii: 10.1007/s10974-023-09663-3
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : UST-VGH joint research grant
ID : VGHUST110-G4-1-1
Organisme : Ministry of Science and Technology, Taiwan
ID : MOST 110-2320-B-008-004
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Allen RE, Boxhorn LK (1989) Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol 138:311–315
pubmed: 2918032
doi: 10.1002/jcp.1041380213
Antoniou A, Mastroyiannopoulos NP, Uney JB, Phylactou LA (2014) miR-186 inhibits muscle cell differentiation through myogenin regulation. J Biol Chem 289:3923–3935
pubmed: 24385428
pmcid: 3924261
doi: 10.1074/jbc.M113.507343
Asfour HA, Allouh MZ, Said RS (2018) Myogenic regulatory factors: the orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (maywood) 243:118–128
pubmed: 29307280
doi: 10.1177/1535370217749494
Azlan A, Dzaki N, Azzam G (2016) Argonaute: the executor of small RNA function. J Genet Genomics 43:481–494
pubmed: 27569398
doi: 10.1016/j.jgg.2016.06.002
Bach LA, Salemi R, Leeding KS (1995) Roles of insulin-like growth factor (IGF) receptors and IGF-binding proteins in IGF-II-induced proliferation and differentiation of L6A1 rat myoblasts. Endocrinology 136:5061–5069
pubmed: 7588242
doi: 10.1210/endo.136.11.7588242
Baghdadi MB, Castel D, Machado L, Fukada SI, Birk DE, Relaix F, Tajbakhsh S, Mourikis P (2018a) Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche. Nature 557:714–718
pubmed: 29795344
pmcid: 5985950
doi: 10.1038/s41586-018-0144-9
Baghdadi MB, Firmino J, Soni K, Evano B, Di Girolamo D, Mourikis P, Castel D, Tajbakhsh S (2018b) Notch-Induced miR-708 antagonizes satellite cell migration and maintains quiescence. Cell Stem Cell 23(859–868):e855
Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH (2018) Cancer-associated Cachexia. Nat Rev Dis Primers 4:17105
pubmed: 29345251
doi: 10.1038/nrdp.2017.105
Beauchamp P, Nassif C, Hillock S, van der Giessen K, von Roretz C, Jasmin BJ, Gallouzi IE (2010) The cleavage of HuR interferes with its transportin-2-mediated nuclear import and promotes muscle fiber formation. Cell Death Differ 17:1588–1599
pubmed: 20379198
doi: 10.1038/cdd.2010.34
Bisbal C, Silhol M, Laubenthal H, Kaluza T, Carnac G, Milligan L, Le Roy F, Salehzada T (2000) The 2’-5’ oligoadenylate/RNase L/RNase L inhibitor pathway regulates both MyoD mRNA stability and muscle cell differentiation. Mol Cell Biol 20:4959–4969
pubmed: 10866653
pmcid: 85946
doi: 10.1128/MCB.20.14.4959-4969.2000
Black BL, Molkentin JD, Olson EN (1998) Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interaction with MEF2. Mol Cell Biol 18:69–77
pubmed: 9418854
pmcid: 121453
doi: 10.1128/MCB.18.1.69
Bober E, Lyons GE, Braun T, Cossu G, Buckingham M, Arnold HH (1991) The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J Cell Biol 113:1255–1265
pubmed: 2045411
doi: 10.1083/jcb.113.6.1255
Borensztein M, Monnier P, Court F, Louault Y, Ripoche MA, Tiret L, Yao Z, Tapscott SJ, Forne T, Montarras D, Dandolo L (2013) Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse. Development 140:1231–1239
pubmed: 23406902
pmcid: 4074262
doi: 10.1242/dev.084665
Braun T, Arnold HH (1995) Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. Embo J 14:1176–1186
pubmed: 7720708
pmcid: 398195
doi: 10.1002/j.1460-2075.1995.tb07101.x
Braun T, Buschhausen-Denker G, Bober E, Tannich E, Arnold HH (1989) A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. Embo J 8:701–709
pubmed: 2721498
pmcid: 400865
doi: 10.1002/j.1460-2075.1989.tb03429.x
Braun T, Rudnicki MA, Arnold HH, Jaenisch R (1992) Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 71:369–382
pubmed: 1423602
doi: 10.1016/0092-8674(92)90507-9
Buckingham M (1992) Making muscle in mammals. Trends Genet 8:144–148
pubmed: 1321521
doi: 10.1016/0168-9525(92)90081-E
Buckingham M, Rigby PW (2014) Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 28:225–238
pubmed: 24525185
doi: 10.1016/j.devcel.2013.12.020
Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin, Group, D.M.D.C.C.W. (2010) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9:77–93
pubmed: 19945913
doi: 10.1016/S1474-4422(09)70271-6
Cacchiarelli D, Legnini I, Martone J, Cazzella V, D’Amico A, Bertini E, Bozzoni I (2011) miRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Mol Med 3:258–265
pubmed: 21425469
pmcid: 3112257
doi: 10.1002/emmm.201100133
Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, Chen JF, Deng Z, Gunn B, Shumate J, Willis MS, Selzman CH, Wang DZ (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–2786
pubmed: 19726871
pmcid: 2735902
doi: 10.1172/JCI36154
Campos AR, Grossman D, White K (1985) Mutant alleles at the locus elav in Drosophila melanogaster lead to nervous system defects. A Develop-Genetic Anal J Neurogenet 2:197–218
Cardinali B, Cappella M, Provenzano C, Garcia-Manteiga JM, Lazarevic D, Cittaro D, Martelli F, Falcone G (2016) MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells. Cell Death Dis 7:e2086
pubmed: 26844700
pmcid: 4849150
doi: 10.1038/cddis.2016.10
Caretti G, Schiltz RL, Dilworth FJ, Di Padova M, Zhao P, Ogryzko V, Fuller-Pace FV, Hoffman EP, Tapscott SJ, Sartorelli V (2006) The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell 11:547–560
pubmed: 17011493
doi: 10.1016/j.devcel.2006.08.003
Castel D, Baghdadi MB, Mella S, Gayraud-Morel B, Marty V, Cavaille J, Antoniewski C, Tajbakhsh S (2018) Small-RNA sequencing identifies dynamic microRNA deregulation during skeletal muscle lineage progression. Sci Rep 8:4208
pubmed: 29523801
pmcid: 5844870
doi: 10.1038/s41598-018-21991-w
Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233
pubmed: 16380711
doi: 10.1038/ng1725
Cheung TH, Quach NL, Charville GW, Liu L, Park L, Edalati A, Yoo B, Hoang P, Rando TA (2012) Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482:524–528
pubmed: 22358842
pmcid: 3292200
doi: 10.1038/nature10834
Chikenji A, Ando H, Nariyama M, Suga T, Iida R, Gomi K (2016) MyoD is regulated by the miR-29a-Tet1 pathway in C2C12 myoblast cells. J Oral Sci 58:219–229
pubmed: 27349543
doi: 10.2334/josnusd.15-0684
Coenen-Stass AML, Sork H, Gatto S, Godfrey C, Bhomra A, Krjutskov K, Hart JR, Westholm JO, O’Donovan L, Roos A, Lochmuller H, Puri PL, El Andaloussi S, Wood MJA, Roberts TC (2018) Comprehensive RNA-sequencing analysis in serum and muscle reveals novel small RNA signatures with biomarker potential for DMD. Mol Ther Nucleic Acids 13:1–15
pubmed: 30219269
pmcid: 6140421
doi: 10.1016/j.omtn.2018.08.005
Coolican SA, Samuel DS, Ewton DZ, McWade FJ, Florini JR (1997) The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J Biol Chem 272:6653–6662
pubmed: 9045696
doi: 10.1074/jbc.272.10.6653
Crippa S, Cassano M, Messina G, Galli D, Galvez BG, Curk T, Altomare C, Ronzoni F, Toelen J, Gijsbers R, Debyser Z, Janssens S, Zupan B, Zaza A, Cossu G, Sampaolesi M (2011) miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. J Cell Biol 193:1197–1212
pubmed: 21708977
pmcid: 3216340
doi: 10.1083/jcb.201011099
Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, Buckingham M (2009) Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci U S A 106:13383–13387
pubmed: 19666532
pmcid: 2726381
doi: 10.1073/pnas.0900210106
Crist CG, Montarras D, Buckingham M (2012) Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell 11:118–126
pubmed: 22770245
doi: 10.1016/j.stem.2012.03.011
Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000
pubmed: 3690668
doi: 10.1016/0092-8674(87)90585-X
de Morree A, van Velthoven CTJ, Gan Q, Salvi JS, Klein JDD, Akimenko I, Quarta M, Biressi S, Rando TA (2017) Staufen1 inhibits MyoD translation to actively maintain muscle stem cell quiescence. Proc Natl Acad Sci U S A 114:E8996–E9005
pubmed: 29073096
pmcid: 5664522
doi: 10.1073/pnas.1708725114
Dey BK, Gagan J, Dutta A (2011) miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol 31:203–214
pubmed: 21041476
doi: 10.1128/MCB.01009-10
Dey BK, Gagan J, Yan Z, Dutta A (2012) miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev 26:2180–2191
pubmed: 23028144
pmcid: 3465739
doi: 10.1101/gad.198085.112
Dey BK, Pfeifer K, Dutta A (2014) The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 28:491–501
pubmed: 24532688
pmcid: 3950346
doi: 10.1101/gad.234419.113
Du J, Li Q, Shen L, Lei H, Luo J, Liu Y, Zhang P, Pu Q, Zhang Y, Shuai S, Li X, Zhang S, Zhu L (2016a) miR-145a-5p Promotes Myoblast Differentiation. Biomed Res Int 2016:5276271
pubmed: 27239472
pmcid: 4864570
doi: 10.1155/2016/5276271
Du J, Zhang Y, Shen L, Luo J, Lei H, Zhang P, Pu Q, Liu Y, Shuai S, Li Q, Li X, Zhang S, Zhu L (2016b) Effect of miR-143-3p on C2C12 myoblast differentiation. Biosci Biotechnol Biochem 80:706–711
pubmed: 26854366
doi: 10.1080/09168451.2015.1123604
Du J, Zhang P, Zhao X, He J, Xu Y, Zou Q, Luo J, Shen L, Gu H, Tang Q, Li M, Jiang Y, Tang G, Bai L, Li X, Wang J, Zhang S, Zhu L (2019) MicroRNA-351-5p mediates skeletal myogenesis by directly targeting lactamase-beta and is regulated by lnc-mg. FASEB J 33:1911–1926
pubmed: 30216112
doi: 10.1096/fj.201701394RRR
Edmondson DG, Olson EN (1989) A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev 3:628–640
pubmed: 2473006
doi: 10.1101/gad.3.5.628
Edmondson DG, Lyons GE, Martin JF, Olson EN (1994) Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 120:1251–1263
pubmed: 8026334
doi: 10.1242/dev.120.5.1251
Elsaeid Elnour I, Dong D, Wang X, Zhansaya T, Khan R, Jian W, Jie C, Chen H (2020) Bta-miR-885 promotes proliferation and inhibits differentiation of myoblasts by targeting MyoD1. J Cell Physiol 235:6625–6636
pubmed: 31985035
doi: 10.1002/jcp.29559
Esteves de Lima J, Relaix F (2021) Master regulators of skeletal muscle lineage development and pluripotent stem cells differentiation. Cell Regen 10:31
pubmed: 34595600
pmcid: 8484369
doi: 10.1186/s13619-021-00093-5
Eun B, Sampley ML, Van Winkle MT, Good AL, Kachman MM, Pfeifer K (2013) The Igf2/H19 muscle enhancer is an active transcriptional complex. Nucleic Acids Res 41:8126–8134
pubmed: 23842673
pmcid: 3783178
doi: 10.1093/nar/gkt597
Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21
pubmed: 24296535
doi: 10.1038/nrg3606
Figueroa A, Cuadrado A, Fan J, Atasoy U, Muscat GE, Munoz-Canoves P, Gorospe M, Munoz A (2003) Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes. Mol Cell Biol 23:4991–5004
pubmed: 12832484
pmcid: 162217
doi: 10.1128/MCB.23.14.4991-5004.2003
Froeschle A, Alric S, Kitzmann M, Carnac G, Aurade F, Rochette-Egly C, Bonnieu A (1998) Retinoic acid receptors and muscle b-HLH proteins: partners in retinoid-induced myogenesis. Oncogene 16:3369–3378
pubmed: 9692544
doi: 10.1038/sj.onc.1201894
Fu L, Wang H, Liao Y, Zhou P, Xu Y, Zhao Y, Xie S, Zhao S, Li X (2020) miR-208b modulating skeletal muscle development and energy homoeostasis through targeting distinct targets. RNA Biol 17:743–754
pubmed: 32037961
pmcid: 7237154
doi: 10.1080/15476286.2020.1728102
Gagan J, Dey BK, Layer R, Yan Z, Dutta A (2011) MicroRNA-378 targets the myogenic repressor MyoR during myoblast differentiation. J Biol Chem 286:19431–19438
pubmed: 21471220
pmcid: 3103322
doi: 10.1074/jbc.M111.219006
Galimov A, Merry TL, Luca E, Rushing EJ, Mizbani A, Turcekova K, Hartung A, Croce CM, Ristow M, Krutzfeldt J (2016) MicroRNA-29a in adult muscle stem cells controls skeletal muscle regeneration during injury and exercise downstream of fibroblast growth factor-2. Stem Cells 34:768–780
pubmed: 26731484
doi: 10.1002/stem.2281
Ganassi M, Badodi S, Wanders K, Zammit PS, Hughes SM (2020) Myogenin is an essential regulator of adult myofibre growth and muscle stem cell homeostasis. Elife 9:e60445
pubmed: 33001028
pmcid: 7599067
doi: 10.7554/eLife.60445
Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE, Lander ES (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300
pubmed: 21874018
pmcid: 3175327
doi: 10.1038/nature10398
Hannon K, Smith CK 2nd, Bales KR, Santerre RF (1992) Temporal and quantitative analysis of myogenic regulatory and growth factor gene expression in the developing mouse embryo. Dev Biol 151:137–144
pubmed: 1374351
doi: 10.1016/0012-1606(92)90221-2
Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH (1993) Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364:501–506
pubmed: 8393145
doi: 10.1038/364501a0
Hinterberger TJ, Sassoon DA, Rhodes SJ, Konieczny SF (1991) Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev Biol 147:144–156
pubmed: 1715299
doi: 10.1016/S0012-1606(05)80014-4
Hirai H, Verma M, Watanabe S, Tastad C, Asakura Y, Asakura A (2010) MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J Cell Biol 191:347–365
pubmed: 20956382
pmcid: 2958479
doi: 10.1083/jcb.201006025
Huang QK, Qiao HY, Fu MH, Li G, Li WB, Chen Z, Wei J, Liang BS (2016) MiR-206 Attenuates denervation-induced skeletal muscle atrophy in rats through regulation of satellite cell differentiation via TGF-beta1, Smad3, and HDAC4 Signaling. Med Sci Monit 22:1161–1170
pubmed: 27054781
pmcid: 4829125
doi: 10.12659/MSM.897909
Hube F, Velasco G, Rollin J, Furling D, Francastel C (2011) Steroid receptor RNA activator protein binds to and counteracts SRA RNA-mediated activation of MyoD and muscle differentiation. Nucleic Acids Res 39:513–525
pubmed: 20855289
doi: 10.1093/nar/gkq833
Janice Sanchez B, Tremblay AK, Leduc-Gaudet JP, Hall DT, Kovacs E, Ma JF, Mubaid S, Hallauer PL, Phillips BL, Vest KE, Corbett AH, Kontoyiannis DL, Hussain SNA, Hastings KEM, Di Marco S, Gallouzi IE (2019) Depletion of HuR in murine skeletal muscle enhances exercise endurance and prevents cancer-induced muscle atrophy. Nat Commun 10:4171
pubmed: 31519904
pmcid: 6744452
doi: 10.1038/s41467-019-12186-6
Jia L, Li YF, Wu GF, Song ZY, Lu HZ, Song CC, Zhang QL, Zhu JY, Yang GS, Shi XE (2013) MiRNA-199a-3p regulates C2C12 myoblast differentiation through IGF-1/AKT/mTOR signal pathway. Int J Mol Sci 15:296–308
pubmed: 24378853
pmcid: 3907811
doi: 10.3390/ijms15010296
Ju H, Yang Y, Sheng A, Qi Y (2016) MicroRNA-378 promotes myogenic differentiation by targeting BMP4. Mol Med Rep 13:2194–2200
pubmed: 26782975
doi: 10.3892/mmr.2016.4764
Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V (2009) Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell 36:61–74
pubmed: 19818710
pmcid: 2761245
doi: 10.1016/j.molcel.2009.08.008
Judge DP, Kass DA, Thompson WR, Wagner KR (2011) Pathophysiology and therapy of cardiac dysfunction in Duchenne muscular dystrophy. Am J Cardiovasc Drugs: Drugs, Dev Other Intervent 11:287–294
doi: 10.2165/11594070-000000000-00000
Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S (2004) Mrf4 determines skeletal muscle identity in Myf5: Myod double-mutant mice. Nature 431:466–471
pubmed: 15386014
doi: 10.1038/nature02876
Khanna N, Ge Y, Chen J (2014) MicroRNA-146b promotes myogenic differentiation and modulates multiple gene targets in muscle cells. PLoS ONE 9:e100657
pubmed: 24956113
pmcid: 4067360
doi: 10.1371/journal.pone.0100657
Kong D, He M, Yang L, Zhou R, Yan YQ, Liang Y, Teng CB (2019) MiR-17 and miR-19 cooperatively promote skeletal muscle cell differentiation. Cell Mol Life Sci 76:5041–5054
pubmed: 31214725
pmcid: 6881278
doi: 10.1007/s00018-019-03165-7
Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, Tsai MJ, O’Malley BW (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97:17–27
pubmed: 10199399
doi: 10.1016/S0092-8674(00)80711-4
Lazure F, Blackburn DM, Corchado AH, Sahinyan K, Karam N, Sharanek A, Nguyen D, Lepper C, Najafabadi HS, Perkins TJ, Jahani-Asl A, Soleimani VD (2020) Myf6/MRF4 is a myogenic niche regulator required for the maintenance of the muscle stem cell pool. EMBO Rep 21:e49499
pubmed: 33047485
pmcid: 7726801
doi: 10.15252/embr.201949499
Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51
pubmed: 14718385
doi: 10.1096/fj.03-0610com
Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854
pubmed: 8252621
doi: 10.1016/0092-8674(93)90529-Y
Lee KP, Shin YJ, Panda AC, Abdelmohsen K, Kim JY, Lee SM, Bahn YJ, Choi JY, Kwon ES, Baek SJ, Kim SY, Gorospe M, Kwon KS (2015) miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4. Genes Dev 29:1605–1617
pubmed: 26215566
pmcid: 4536309
doi: 10.1101/gad.263574.115
Lee SY, Yang J, Park JH, Shin HK, Kim WJ, Kim SY, Lee EJ, Hwang I, Lee CS, Lee J, Kim HS (2020) The MicroRNA-92a/Sp1/MyoD axis regulates hypoxic stimulation of myogenic lineage differentiation in mouse embryonic stem cells. Mol Ther 28:142–156
pubmed: 31606324
doi: 10.1016/j.ymthe.2019.08.014
Li S, Czubryt MP, McAnally J, Bassel-Duby R, Richardson JA, Wiebel FF, Nordheim A, Olson EN (2005) Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc Natl Acad Sci U S A 102:1082–1087
pubmed: 15647354
pmcid: 545866
doi: 10.1073/pnas.0409103102
Liu N, Williams AH, Maxeiner JM, Bezprozvannaya S, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN (2012) microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J Clin Invest 122:2054–2065
pubmed: 22546853
pmcid: 3366415
doi: 10.1172/JCI62656
Lozano-Velasco E, Vallejo D, Esteban FJ, Doherty C, Hernandez-Torres F, Franco D, Aranega AE (2015) A Pitx2-MicroRNA pathway modulates cell proliferation in myoblasts and skeletal-muscle satellite cells and promotes their commitment to a myogenic cell fate. Mol Cell Biol 35:2892–2909
pubmed: 26055324
pmcid: 4525317
doi: 10.1128/MCB.00536-15
Luo W, Li G, Yi Z, Nie Q, Zhang X (2016) E2F1-miR-20a-5p/20b-5p auto-regulatory feedback loop involved in myoblast proliferation and differentiation. Sci Rep 6:27904
pubmed: 27282946
pmcid: 4901305
doi: 10.1038/srep27904
Ma Z, Sun X, Xu D, Xiong Y, Zuo B (2015) MicroRNA, miR-374b, directly targets Myf6 and negatively regulates C2C12 myoblasts differentiation. Biochem Biophys Res Commun 467:670–675
pubmed: 26498529
doi: 10.1016/j.bbrc.2015.10.086
Martinet C, Monnier P, Louault Y, Benard M, Gabory A, Dandolo L (2016) H19 controls reactivation of the imprinted gene network during muscle regeneration. Development 143:962–971
pubmed: 26980793
doi: 10.1242/dev.131771
Mi L, Li Y, Zhang Q, Zhao C, Peng Y, Yang G, Zheng X (2015) MicroRNA-139-5p regulates C2C12 cell myogenesis through blocking Wnt/beta-catenin signaling pathway. Biochem Cell Biol 93:8–15
pubmed: 25529604
doi: 10.1139/bcb-2014-0079
Miner JH, Wold B (1990) Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc Natl Acad Sci U S A 87:1089–1093
pubmed: 2300571
pmcid: 53416
doi: 10.1073/pnas.87.3.1089
Mizuno H, Nakamura A, Aoki Y, Ito N, Kishi S, Yamamoto K, Sekiguchi M, Takeda S, Hashido K (2011) Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy. PLoS ONE 6:e18388
pubmed: 21479190
pmcid: 3068182
doi: 10.1371/journal.pone.0018388
Mok GF, Lozano-Velasco E, Munsterberg A (2017) microRNAs in skeletal muscle development. Semin Cell Dev Biol 72:67–76
pubmed: 29102719
doi: 10.1016/j.semcdb.2017.10.032
Molkentin JD, Olson EN (1996) Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci U S A 93:9366–9373
pubmed: 8790335
pmcid: 38433
doi: 10.1073/pnas.93.18.9366
Moresi V, Williams AH, Meadows E, Flynn JM, Potthoff MJ, McAnally J, Shelton JM, Backs J, Klein WH, Richardson JA, Bassel-Duby R, Olson EN (2010) Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 143:35–45
pubmed: 20887891
pmcid: 2982779
doi: 10.1016/j.cell.2010.09.004
Moretti I, Ciciliot S, Dyar KA, Abraham R, Murgia M, Agatea L, Akimoto T, Bicciato S, Forcato M, Pierre P, Uhlenhaut NH, Rigby PW, Carvajal JJ, Blaauw B, Calabria E, Schiaffino S (2016) MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity. Nat Commun 7:12397
pubmed: 27484840
pmcid: 4976255
doi: 10.1038/ncomms12397
Motohashi N, Alexander MS, Shimizu-Motohashi Y, Myers JA, Kawahara G, Kunkel LM (2013) Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. J Cell Sci 126:2678–2691
pubmed: 23606743
pmcid: 3687700
Mubaid S, Ma JF, Omer A, Ashour K, Lian XJ, Sanchez BJ, Robinson S, Cammas A, Dormoy-Raclet V, Di Marco S, Chittur SV, Tenenbaum SA, Gallouzi IE (2019) HuR counteracts miR-330 to promote STAT3 translation during inflammation-induced muscle wasting. Proc Natl Acad Sci U S A 116:17261–17270
pubmed: 31405989
pmcid: 6717253
doi: 10.1073/pnas.1905172116
Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I, Nabeshima Y (1993) Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364:532–535
pubmed: 8393146
doi: 10.1038/364532a0
Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8:278–284
pubmed: 16489342
doi: 10.1038/ncb1373
Narasimhan A, Ghosh S, Stretch C, Greiner R, Bathe OF, Baracos V, Damaraju S (2017) Small RNAome profiling from human skeletal muscle: novel miRNAs and their targets associated with cancer cachexia. J Cachexia Sarcopenia Muscle 8:405–416
pubmed: 28058815
pmcid: 5476855
doi: 10.1002/jcsm.12168
Olson EN, Klein WH (1994) bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev 8:1–8
pubmed: 8288123
doi: 10.1101/gad.8.1.1
O’Rourke JR, Georges SA, Seay HR, Tapscott SJ, McManus MT, Goldhamer DJ, Swanson MS, Harfe BD (2007) Essential role for Dicer during skeletal muscle development. Dev Biol 311:359–368
pubmed: 17936265
pmcid: 2753295
doi: 10.1016/j.ydbio.2007.08.032
Ott MO, Bober E, Lyons G, Arnold H, Buckingham M (1991) Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111:1097–1107
pubmed: 1652425
doi: 10.1242/dev.111.4.1097
Otto A, Schmidt C, Patel K (2006) Pax3 and Pax7 expression and regulation in the avian embryo. Anat Embryol (berl) 211:293–310
pubmed: 16506066
doi: 10.1007/s00429-006-0083-3
Pan YC, Wang XW, Teng HF, Wu YJ, Chang HC, Chen SL (2015) Wnt3a signal pathways activate MyoD expression by targeting cis-elements inside and outside its distal enhancer. Biosci Rep 35(2):e00180
pubmed: 25651906
pmcid: 4370097
doi: 10.1042/BSR20140177
Parker MH, Perry RL, Fauteux MC, Berkes CA, Rudnicki MA (2006) MyoD synergizes with the E-protein HEB beta to induce myogenic differentiation. Mol Cell Biol 26:5771–5783
pubmed: 16847330
pmcid: 1592768
doi: 10.1128/MCB.02404-05
Patapoutian A, Yoon JK, Miner JH, Wang S, Stark K, Wold B (1995) Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development 121:3347–3358
pubmed: 7588068
doi: 10.1242/dev.121.10.3347
Peng S, Song C, Li H, Cao X, Ma Y, Wang X, Huang Y, Lan X, Lei C, Chaogetu B, Chen H (2019) Circular RNA SNX29 sponges miR-744 to regulate proliferation and differentiation of myoblasts by activating the Wnt5a/Ca(2+) Signaling Pathway. Mol Ther Nucleic Acids 16:481–493
pubmed: 31051333
pmcid: 6495097
doi: 10.1016/j.omtn.2019.03.009
Pirskanen A, Kiefer JC, Hauschka SD (2000) IGFs, insulin, Shh, bFGF, and TGF-beta1 interact synergistically to promote somite myogenesis in vitro. Dev Biol 224:189–203
pubmed: 10926759
doi: 10.1006/dbio.2000.9784
Pownall ME, Emerson CP Jr (1992) Sequential activation of three myogenic regulatory genes during somite morphogenesis in quail embryos. Dev Biol 151:67–79
pubmed: 1315698
doi: 10.1016/0012-1606(92)90214-2
Qiu H, Liu N, Luo L, Zhong J, Tang Z, Kang K, Qu J, Peng W, Liu L, Li L, Gou D (2016) MicroRNA-17-92 regulates myoblast proliferation and differentiation by targeting the ENH1/Id1 signaling axis. Cell Death Differ 23:1658–1669
pubmed: 27315298
pmcid: 5041193
doi: 10.1038/cdd.2016.56
Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A 103:8721–8726
pubmed: 16731620
pmcid: 1482645
doi: 10.1073/pnas.0602831103
Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953
pubmed: 15843801
doi: 10.1038/nature03594
Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172:91–102
pubmed: 16380438
pmcid: 2063537
doi: 10.1083/jcb.200508044
Roberts TC, Blomberg KE, McClorey G, El Andaloussi S, Godfrey C, Betts C, Coursindel T, Gait MJ, Smith CI, Wood MJ (2012) Expression analysis in multiple muscle groups and serum reveals complexity in the microRNA transcriptome of the mdx mouse with implications for therapy. Mol Ther Nucleic Acids 1:e39
pubmed: 23344181
pmcid: 3437806
doi: 10.1038/mtna.2012.26
Rosenberg MI, Georges SA, Asawachaicharn A, Analau E, Tapscott SJ (2006) MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J Cell Biol 175:77–85
pubmed: 17030984
pmcid: 2064500
doi: 10.1083/jcb.200603039
Rudnicki MA, Braun T, Hinuma S, Jaenisch R (1992) Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71:383–390
pubmed: 1330322
doi: 10.1016/0092-8674(92)90508-A
Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75:1351–1359
pubmed: 8269513
doi: 10.1016/0092-8674(93)90621-V
Sassoon D, Lyons G, Wright WE, Lin V, Lassar A, Weintraub H, Buckingham M (1989) Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature 341:303–307
pubmed: 2552320
doi: 10.1038/341303a0
Sato T, Yamamoto T, Sehara-Fujisawa A (2014) miR-195/497 induce postnatal quiescence of skeletal muscle stem cells. Nat Commun 5:4597
pubmed: 25119651
doi: 10.1038/ncomms5597
Seok HY, Tatsuguchi M, Callis TE, He A, Pu WT, Wang DZ (2011) miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation. J Biol Chem 286:35339–35346
pubmed: 21868385
pmcid: 3195620
doi: 10.1074/jbc.M111.273276
Shao X, Gong W, Wang Q, Wang P, Shi T, Mahmut A, Qin J, Yao Y, Yan W, Chen D, Chen X, Jiang Q, Guo B (2022) Atrophic skeletal muscle fibre-derived small extracellular vesicle miR-690 inhibits satellite cell differentiation during ageing. J Cachexia Sarcopenia Muscle 13:3163–3180
pubmed: 36237168
pmcid: 9745557
doi: 10.1002/jcsm.13106
Shi Y, Mao X, Cai M, Hu S, Lai X, Chen S, Jia X, Wang J, Lai S (2021) miR-194-5p negatively regulates the proliferation and differentiation of rabbit skeletal muscle satellite cells. Mol Cell Biochem 476:425–433
pubmed: 32997306
doi: 10.1007/s11010-020-03918-0
Shibasaki H, Imamura M, Arima S, Tanihata J, Kuraoka M, Matsuzaka Y, Uchiumi F, Tanuma SI, Takeda S (2019) Characterization of a novel microRNA, miR-188, elevated in serum of muscular dystrophy dog model. PLoS ONE 14:e0211597
pubmed: 30699200
pmcid: 6353185
doi: 10.1371/journal.pone.0211597
Shin YJ, Kwon ES, Lee SM, Kim SK, Min KW, Lim JY, Lee B, Kang JS, Kwak JY, Son YH, Choi JY, Yang YR, Kim S, Kim YS, Jang HC, Suh Y, Yoon JH, Lee KP, Kwon KS (2020) A subset of microRNAs in the Dlk1-Dio3 cluster regulates age-associated muscle atrophy by targeting Atrogin-1. J Cachexia Sarcopenia Muscle 11:1336–1350
pubmed: 32495509
pmcid: 7567143
doi: 10.1002/jcsm.12578
Smith CK 2nd, Janney MJ, Allen RE (1994) Temporal expression of myogenic regulatory genes during activation, proliferation, and differentiation of rat skeletal muscle satellite cells. J Cell Physiol 159:379–385
pubmed: 8163577
doi: 10.1002/jcp.1041590222
Stern HM, Lin-Jones J, Hauschka SD (1997) Synergistic interactions between bFGF and a TGF-beta family member may mediate myogenic signals from the neural tube. Development 124:3511–3523
pubmed: 9342044
doi: 10.1242/dev.124.18.3511
Sutandyo N (2021) The role of microRNA in cancer cachexia and muscle wasting: a review article. Caspian J Intern Med 12:124–128
pubmed: 34012527
pmcid: 8111806
Suzuki HI (2023) Roles of MicroRNAs in disease biology. JMA J 6:104–113
pubmed: 37179717
pmcid: 10169270
doi: 10.31662/jmaj.2023-0009
Tajbakhsh S, Borello U, Vivarelli E, Kelly R, Papkoff J, Duprez D, Buckingham M, Cossu G (1998) Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125:4155–4162
pubmed: 9753670
doi: 10.1242/dev.125.21.4155
Tan Y, Shen L, Gan M, Fan Y, Cheng X, Zheng T, Niu L, Chen L, Jiang D, Li X, Zhang S, Zhu L (2020) Downregulated miR-204 promotes skeletal muscle regeneration. Biomed Res Int 2020:3183296
pubmed: 33282943
pmcid: 7685802
doi: 10.1155/2020/3183296
Tisdale MJ (2009) Mechanisms of cancer cachexia. Physiol Rev 89:381–410
pubmed: 19342610
doi: 10.1152/physrev.00016.2008
Tong HL, Jiang RY, Zhang WW, Yan YQ (2017) MiR-2425-5p targets RAD9A and MYOG to regulate the proliferation and differentiation of bovine skeletal muscle-derived satellite cells. Sci Rep 7:418
pubmed: 28341832
pmcid: 5428422
doi: 10.1038/s41598-017-00470-8
van der Giessen K, Di-Marco S, Clair E, Gallouzi IE (2003) RNAi-mediated HuR depletion leads to the inhibition of muscle cell differentiation. J Biol Chem 278:47119–47128
pubmed: 12944397
doi: 10.1074/jbc.M308889200
van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579
pubmed: 17379774
doi: 10.1126/science.1139089
van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ Jr, Olson EN (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17:662–673
pubmed: 19922871
pmcid: 2796371
doi: 10.1016/j.devcel.2009.10.013
von Maltzahn J, Chang NC, Bentzinger CF, Rudnicki MA (2012) Wnt signaling in myogenesis. Trends Cell Biol 22:602–609
doi: 10.1016/j.tcb.2012.07.008
Wang Y, Pessin JE (2013) Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 16:243–250
pubmed: 23493017
pmcid: 4327989
doi: 10.1097/MCO.0b013e328360272d
Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, Cheng A, Hall BM, Qualman SJ, Chandler DS, Croce CM, Guttridge DC (2008) NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14:369–381
pubmed: 18977326
doi: 10.1016/j.ccr.2008.10.006
Wang L, Chen X, Zheng Y, Li F, Lu Z, Chen C, Liu J, Wang Y, Peng Y, Shen Z, Gao J, Zhu M, Chen H (2012) MiR-23a inhibits myogenic differentiation through down regulation of fast myosin heavy chain isoforms. Exp Cell Res 318:2324–2334
pubmed: 22771720
doi: 10.1016/j.yexcr.2012.06.018
Wang J, Tan J, Qi Q, Yang L, Wang Y, Zhang C, Hu L, Chen H, Fang X (2018) miR-487b-3p suppresses the proliferation and differentiation of myoblasts by targeting IRS1 in skeletal muscle myogenesis. Int J Biol Sci 14:760–774
pubmed: 29910686
pmcid: 6001677
doi: 10.7150/ijbs.25052
Wei W, Zhang WY, Bai JB, Zhang HX, Zhao YY, Li XY, Zhao SH (2016) The NF-kappaB-modulated microRNAs miR-195 and miR-497 inhibit myoblast proliferation by targeting Igf1r, Insr and cyclin genes. J Cell Sci 129:39–50
pubmed: 26567220
Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, Bassel-Duby R, Sanes JR, Olson EN (2009) MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326:1549–1554
pubmed: 20007902
pmcid: 2796560
doi: 10.1126/science.1181046
Yin H, He H, Shen X, Zhao J, Cao X, Han S, Cui C, Chen Y, Wei Y, Xia L, Wang Y, Li D, Zhu Q (2020) miR-9–5p inhibits skeletal muscle satellite cell proliferation and differentiation by targeting IGF2BP3 through the IGF2-PI3K/Akt Signaling Pathway. Int J Mol Sci 21(5):1655
pubmed: 32121275
pmcid: 7084337
doi: 10.3390/ijms21051655
Yokoyama S, Asahara H (2011) The myogenic transcriptional network. Cell Mol Life Sci 68:1843–1849
pubmed: 21318263
pmcid: 3092062
doi: 10.1007/s00018-011-0629-2
Yu X, Zhang Y, Li T, Ma Z, Jia H, Chen Q, Zhao Y, Zhai L, Zhong R, Li C, Zou X, Meng J, Chen AK, Puri PL, Chen M, Zhu D (2017) Long non-coding RNA Linc-RAM enhances myogenic differentiation by interacting with MyoD. Nat Commun 8:14016
pubmed: 28091529
pmcid: 5241866
doi: 10.1038/ncomms14016
Yu X, Zhang X, Wang G, Wang B, Ding Y, Zhao J, Liu H, Cui S (2020) miR-206 as a prognostic and sensitivity biomarker for platinum chemotherapy in epithelial ovarian cancer. Cancer Cell Int 20:534
pubmed: 33292230
pmcid: 7641844
doi: 10.1186/s12935-020-01623-y
Zammit PS (2017) Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol 72:19–32
pubmed: 29127046
doi: 10.1016/j.semcdb.2017.11.011
Zhang W, Behringer RR, Olson EN (1995) Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Genes Dev 9:1388–1399
pubmed: 7797078
doi: 10.1101/gad.9.11.1388
Zhang J, Ying ZZ, Tang ZL, Long LQ, Li K (2012) MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene. J Biol Chem 287:21093–21101
pubmed: 22547064
pmcid: 3375532
doi: 10.1074/jbc.M111.330381
Zhang BW, Cai HF, Wei XF, Sun JJ, Lan XY, Lei CZ, Lin FP, Qi XL, Plath M, Chen H (2016) miR-30–5p regulates muscle differentiation and alternative splicing of muscle-related genes by targeting MBNL. Int J Mol Sci 17(2):182
pubmed: 26840300
pmcid: 4783916
doi: 10.3390/ijms17020182
Zhang CY, Yang CQ, Chen Q, Liu J, Zhang G, Dong C, Liu XL, Farooq HMU, Zhao SQ, Luo LH, Jiang SF, Niu YB, Yin DC (2021) miR-194-Loaded Gelatin Nanospheres Target MEF2C to suppress muscle atrophy in a mechanical unloading model. Mol Pharm 18:2959–2973
pubmed: 34189919
doi: 10.1021/acs.molpharmaceut.1c00121
Zhao X, Gu H, Wang L, Zhang P, Du J, Shen L, Jiang D, Wang J, Li X, Zhang S, Li M, Zhu L (2020) MicroRNA23a5p mediates the proliferation and differentiation of C2C12 myoblasts. Mol Med Rep 22:3705–3714
pubmed: 32901860
pmcid: 7533443