Inflammation in Metal-Induced Neurological Disorders and Neurodegenerative Diseases.
Metals
Neurodegenerative disease
Neuroinflammation
Neurological disorders
Journal
Biological trace element research
ISSN: 1559-0720
Titre abrégé: Biol Trace Elem Res
Pays: United States
ID NLM: 7911509
Informations de publication
Date de publication:
11 Jan 2024
11 Jan 2024
Historique:
received:
07
11
2023
accepted:
23
12
2023
medline:
11
1
2024
pubmed:
11
1
2024
entrez:
11
1
2024
Statut:
aheadofprint
Résumé
Essential metals play critical roles in maintaining human health as they participate in various physiological activities. Nonetheless, both excessive accumulation and deficiency of these metals may result in neurotoxicity secondary to neuroinflammation and the activation of microglia and astrocytes. Activation of these cells can promote the release of pro-inflammatory cytokines. It is well known that neuroinflammation plays a critical role in metal-induced neurotoxicity as well as the development of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Initially seen as a defense mechanism, persistent inflammatory responses are now considered harmful. Astrocytes and microglia are key regulators of neuroinflammation in the central nervous system, and their excessive activation may induce sustained neuroinflammation. Therefore, in this review, we aim to emphasize the important role and molecular mechanisms underlying metal-induced neurotoxicity. Our objective is to raise the awareness on metal-induced neuroinflammation in neurological disorders. However, it is not only just neuroinflammation that different metals could induce; they can also cause harm to the nervous system through oxidative stress, apoptosis, and autophagy, to name a few. The primary pathophysiological mechanism by which these metals induce neurological disorders remains to be determined. In addition, given the various pathways through which individuals are exposed to metals, it is necessary to also consider the effects of co-exposure to multiple metals on neurological disorders.
Identifiants
pubmed: 38206494
doi: 10.1007/s12011-023-04041-z
pii: 10.1007/s12011-023-04041-z
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : NSFC82160626
Organisme : Guangxi Natural Science Foundation
ID : 2018GXNSFBA050060
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435. https://doi.org/10.1038/nature07201
doi: 10.1038/nature07201
pubmed: 18650913
Headland SE, Norling LV (2015) The resolution of inflammation: principles and challenges. Semin Immunol 27(3):149–160. https://doi.org/10.1016/j.smim.2015.03.014
doi: 10.1016/j.smim.2015.03.014
pubmed: 25911383
Furman D et al (2019) Chronic inflammation in the etiology of disease across the life span. Nat Med 25(12):1822–1832. https://doi.org/10.1038/s41591-019-0675-0
doi: 10.1038/s41591-019-0675-0
pubmed: 31806905
pmcid: 7147972
Garza-Lombó C et al (2019) Arsenic-induced neurotoxicity: a mechanistic appraisal. J Biol Inorg Chem 24(8):1305–1316. https://doi.org/10.1007/s00775-019-01740-8
doi: 10.1007/s00775-019-01740-8
pubmed: 31748979
pmcid: 6903391
Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70. https://doi.org/10.1111/ene.13439
doi: 10.1111/ene.13439
pubmed: 28872215
Crous-Bou M et al (2017) Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res Ther 9(1):71. https://doi.org/10.1186/s13195-017-0297-z
doi: 10.1186/s13195-017-0297-z
pubmed: 28899416
pmcid: 5596480
Silva MVF et al (2019) Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci 26(1):33. https://doi.org/10.1186/s12929-019-0524-y
doi: 10.1186/s12929-019-0524-y
pubmed: 31072403
pmcid: 6507104
Laurent C, Buée L, Blum D (2018) Tau and neuroinflammation: what impact for Alzheimer’s disease and tauopathies? Biomed J 41(1):21–33. https://doi.org/10.1016/j.bj.2018.01.003
doi: 10.1016/j.bj.2018.01.003
pubmed: 29673549
pmcid: 6138617
Barron M et al (2017) A state of delirium: deciphering the effect of inflammation on tau pathology in Alzheimer’s disease. Exp Gerontol 94:103–107. https://doi.org/10.1016/j.exger.2016.12.006
doi: 10.1016/j.exger.2016.12.006
pubmed: 27979768
pmcid: 5479936
Qiu S et al (2021) Adult-onset CNS myelin sulfatide deficiency is sufficient to cause Alzheimer’s disease-like neuroinflammation and cognitive impairment. Mol Neurodegener 16(1):64. https://doi.org/10.1186/s13024-021-00488-7
doi: 10.1186/s13024-021-00488-7
pubmed: 34526055
pmcid: 8442347
Guo JT et al (2002) Inflammation-dependent cerebral deposition of serum amyloid a protein in a mouse model of amyloidosis. J Neurosci 22(14):5900–5909. https://doi.org/10.1523/jneurosci.22-14-05900.2002
doi: 10.1523/jneurosci.22-14-05900.2002
pubmed: 12122052
pmcid: 6757908
Zhang Z, Wang M, Liu X (2022) C-reactive protein and risk of Alzheimer’s disease. Neurobiol Aging 109:259–263. https://doi.org/10.1016/j.neurobiolaging.2021.08.010
doi: 10.1016/j.neurobiolaging.2021.08.010
pubmed: 34538509
Matsubara E et al (1990) Alpha 1-antichymotrypsin as a possible biochemical marker for Alzheimer-type dementia. Ann Neurol 28(4):561–567. https://doi.org/10.1002/ana.410280414
doi: 10.1002/ana.410280414
pubmed: 2147546
Calvo-Rodriguez M et al (2020) Role of toll like receptor 4 in Alzheimer’s disease. Front Immunol 11:1588. https://doi.org/10.3389/fimmu.2020.01588
doi: 10.3389/fimmu.2020.01588
pubmed: 32983082
pmcid: 7479089
Sarlus H, Heneka MT (2017) Microglia in Alzheimer’s disease. J Clin Invest 127(9):3240–3249. https://doi.org/10.1172/jci90606
doi: 10.1172/jci90606
pubmed: 28862638
pmcid: 5669553
Ozben T, Ozben S (2019) Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease. Clin Biochem 72:87–89. https://doi.org/10.1016/j.clinbiochem.2019.04.001
doi: 10.1016/j.clinbiochem.2019.04.001
pubmed: 30954437
Cai Z, Hussain MD, Yan LJ (2014) Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci 124(5):307–321. https://doi.org/10.3109/00207454.2013.833510
doi: 10.3109/00207454.2013.833510
pubmed: 23930978
Cornejo F et al (2018) Scavenger Receptor-A deficiency impairs immune response of microglia and astrocytes potentiating Alzheimer’s disease pathophysiology. Brain Behav Immun 69:336–350. https://doi.org/10.1016/j.bbi.2017.12.007
doi: 10.1016/j.bbi.2017.12.007
pubmed: 29246456
Demirci S et al (2017) The serum levels of resistin and its relationship with other proinflammatory cytokines in patients with Alzheimer’s disease. Clin Psychopharmacol Neurosci 15(1):59–63. https://doi.org/10.9758/cpn.2017.15.1.59
doi: 10.9758/cpn.2017.15.1.59
pubmed: 28138112
pmcid: 5290717
Perea JR, Bolós M, Avila J (2020) Microglia in Alzheimer's disease in the context of tau pathology. Biomolecules 10(10). https://doi.org/10.3390/biom10101439
Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28(3):138–145. https://doi.org/10.1016/j.it.2007.01.005
doi: 10.1016/j.it.2007.01.005
pubmed: 17276138
Medeiros R, LaFerla FM (2013) Astrocytes: conductors of the Alzheimer disease neuroinflammatory symphony. Exp Neurol 239:133–138. https://doi.org/10.1016/j.expneurol.2012.10.007
doi: 10.1016/j.expneurol.2012.10.007
pubmed: 23063604
Olabarria M et al (2010) Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 58(7):831–838. https://doi.org/10.1002/glia.20967
doi: 10.1002/glia.20967
pubmed: 20140958
Kaur D, Sharma V, Deshmukh R (2019) Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology 27(4):663–677. https://doi.org/10.1007/s10787-019-00580-x
doi: 10.1007/s10787-019-00580-x
pubmed: 30874945
Wang C et al (2022) Forsythoside A mitigates Alzheimer’s-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation. Int J Biol Sci 18(5):2075–2090. https://doi.org/10.7150/ijbs.69714
doi: 10.7150/ijbs.69714
pubmed: 35342364
pmcid: 8935224
McGeer PL, McGeer EG (2007) NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging 28(5):639–647. https://doi.org/10.1016/j.neurobiolaging.2006.03.013
doi: 10.1016/j.neurobiolaging.2006.03.013
pubmed: 16697488
Szekely CA et al (2004) Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: a systematic review. Neuroepidemiology 23(4):159–169. https://doi.org/10.1159/000078501
doi: 10.1159/000078501
pubmed: 15279021
Yu F et al (2015) Cu(II) enhances the effect of Alzheimer’s amyloid-β peptide on microglial activation. J Neuroinflammation 12:122. https://doi.org/10.1186/s12974-015-0343-3
doi: 10.1186/s12974-015-0343-3
pubmed: 26104799
pmcid: 4490619
Liu J et al (2023) APP/PS1 gene-environmental cadmium interaction aggravates the progression of Alzheimer’s disease in mice via the blood-brain barrier, amyloid-β, and inflammation. J Alzheimers Dis 94(1):115–136. https://doi.org/10.3233/jad-221205
doi: 10.3233/jad-221205
pubmed: 37248897
Tripathi PN et al (2019) Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem 85:82–96. https://doi.org/10.1016/j.bioorg.2018.12.017
doi: 10.1016/j.bioorg.2018.12.017
pubmed: 30605887
Rai SN et al (2018) Commentary: Mild endoplasmic reticulum stress ameliorates lpopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. Front Aging Neurosci 10:192. https://doi.org/10.3389/fnagi.2018.00192
doi: 10.3389/fnagi.2018.00192
pubmed: 29988480
pmcid: 6026620
Schneider RB, Iourinets J, Richard IH (2017) Parkinson’s disease psychosis: presentation, diagnosis and management. Neurodegener Dis Manag 7(6):365–376. https://doi.org/10.2217/nmt-2017-0028
doi: 10.2217/nmt-2017-0028
pubmed: 29160144
Simon DK, Tanner CM, Brundin P (2020) Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med 36(1):1–12. https://doi.org/10.1016/j.cger.2019.08.002
doi: 10.1016/j.cger.2019.08.002
pubmed: 31733690
Dorsey ER et al (2018) The emerging evidence of the Parkinson pandemic. J Parkinsons Dis 8(s1):S3-s8. https://doi.org/10.3233/jpd-181474
doi: 10.3233/jpd-181474
pubmed: 30584159
pmcid: 6311367
Jacobs ML et al (2016) Risk factor profile in Parkinson’s disease subtype with REM sleep behavior disorder. J Parkinsons Dis 6(1):231–237. https://doi.org/10.3233/jpd-150725
doi: 10.3233/jpd-150725
pubmed: 26889635
Zhao Y et al (2023) Metal exposure and risk of Parkinson disease: a systematic review and meta-analysis. Am J Epidemiol 192(7):1207–1223. https://doi.org/10.1093/aje/kwad082
doi: 10.1093/aje/kwad082
pubmed: 37022311
pmcid: 10326611
Moreno JA et al (2011) Manganese-induced NF-kappaB activation and nitrosative stress is decreased by estrogen in juvenile mice. Toxicol Sci 122(1):121–133. https://doi.org/10.1093/toxsci/kfr091
doi: 10.1093/toxsci/kfr091
pubmed: 21512103
pmcid: 3143469
Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194. https://doi.org/10.1007/s12035-014-9070-5
doi: 10.1007/s12035-014-9070-5
pubmed: 25598354
Lee E et al (2019) MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ 26(2):213–228. https://doi.org/10.1038/s41418-018-0124-5
doi: 10.1038/s41418-018-0124-5
pubmed: 29786072
Pajares M et al (2020) Inflammation in Parkinson's disease: mechanisms and therapeutic implications. Cells 9(7). https://doi.org/10.3390/cells9071687
Lee HJ et al (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285(12):9262–9272. https://doi.org/10.1074/jbc.M109.081125
doi: 10.1074/jbc.M109.081125
pubmed: 20071342
pmcid: 2838344
Braak H, Sastre M, Del Tredici K (2007) Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol 114(3):231–241. https://doi.org/10.1007/s00401-007-0244-3
doi: 10.1007/s00401-007-0244-3
pubmed: 17576580
Gu XL et al (2010) Astrocytic expression of Parkinson’s disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol Brain 3:12. https://doi.org/10.1186/1756-6606-3-12
doi: 10.1186/1756-6606-3-12
pubmed: 20409326
pmcid: 2873589
Lastres-Becker I et al (2012) α-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson’s disease. Hum Mol Genet 21(14):3173–3192. https://doi.org/10.1093/hmg/dds143
doi: 10.1093/hmg/dds143
pubmed: 22513881
Yun SP et al (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med 24(7):931–938. https://doi.org/10.1038/s41591-018-0051-5
doi: 10.1038/s41591-018-0051-5
pubmed: 29892066
pmcid: 6039259
Klegeris A et al (2006) Alpha-synuclein and its disease-causing mutants induce ICAM-1 and IL-6 in human astrocytes and astrocytoma cells. Faseb J 20(12):2000–2008. https://doi.org/10.1096/fj.06-6183com
doi: 10.1096/fj.06-6183com
pubmed: 17012252
Liddelow SA et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. https://doi.org/10.1038/nature21029
doi: 10.1038/nature21029
pubmed: 28099414
pmcid: 5404890
Verma DK et al (2021) Alpha-synuclein preformed fibrils induce cellular senescence in Parkinson's disease models. Cells 10(7). https://doi.org/10.3390/cells10071694
Wakabayashi K et al (2000) NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol 99(1):14–20. https://doi.org/10.1007/pl00007400
doi: 10.1007/pl00007400
pubmed: 10651022
Rai SN et al (2016) Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model. J Chem Neuroanat 71:41–49. https://doi.org/10.1016/j.jchemneu.2015.12.002
doi: 10.1016/j.jchemneu.2015.12.002
pubmed: 26686287
Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228. https://doi.org/10.1016/s0140-6736(07)60111-1
doi: 10.1016/s0140-6736(07)60111-1
pubmed: 17240289
McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25(1):24–34. https://doi.org/10.1111/ene.13413
doi: 10.1111/ene.13413
pubmed: 28817209
Reiner A et al (1988) Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A 85(15):5733–5737. https://doi.org/10.1073/pnas.85.15.5733
doi: 10.1073/pnas.85.15.5733
pubmed: 2456581
pmcid: 281835
Ha AD, Fung VS (2012) Huntington’s disease. Curr Opin Neurol 25(4):491–498. https://doi.org/10.1097/WCO.0b013e3283550c97
doi: 10.1097/WCO.0b013e3283550c97
pubmed: 22772878
Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10(1):83–98. https://doi.org/10.1016/s1474-4422(10)70245-3
doi: 10.1016/s1474-4422(10)70245-3
pubmed: 21163446
Ramakrishna K et al (2023) WNT-β catenin signaling as a potential therapeutic target for neurodegenerative diseases: current status and future perspective. Diseases 11(3). https://doi.org/10.3390/diseases11030089
Moscovitch-Lopatin M et al (2010) Optimization of an HTRF assay for the detection of soluble mutant huntingtin in human buffy coats: a potential biomarker in blood for Huntington disease. PLoS Curr 2:Rrn1205. https://doi.org/10.1371/currents.RRN1205
doi: 10.1371/currents.RRN1205
pubmed: 21278900
pmcid: 3015780
Möller T (2010) Neuroinflammation in Huntington’s disease. J Neural Transm 117(8):1001–1008. https://doi.org/10.1007/s00702-010-0430-7 . (Vienna)
doi: 10.1007/s00702-010-0430-7
pubmed: 20535620
Hsiao HY et al (2013) A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington’s disease. Hum Mol Genet 22(9):1826–1842. https://doi.org/10.1093/hmg/ddt036
doi: 10.1093/hmg/ddt036
pubmed: 23372043
Subhramanyam CS et al (2019) Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 94:112–120. https://doi.org/10.1016/j.semcdb.2019.05.004
doi: 10.1016/j.semcdb.2019.05.004
pubmed: 31077796
Palazuelos J et al (2009) Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain 132(Pt 11):3152–3164. https://doi.org/10.1093/brain/awp239
doi: 10.1093/brain/awp239
pubmed: 19805493
Pavese N et al (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66(11):1638–1643. https://doi.org/10.1212/01.wnl.0000222734.56412.17
doi: 10.1212/01.wnl.0000222734.56412.17
pubmed: 16769933
Saba J et al (2022) Neuroinflammation in Huntington’s disease: a starring role for astrocyte and microglia. Curr Neuropharmacol 20(6):1116–1143. https://doi.org/10.2174/1570159x19666211201094608
doi: 10.2174/1570159x19666211201094608
pubmed: 34852742
pmcid: 9886821
Crotti A, Glass CK (2015) The choreography of neuroinflammation in Huntington’s disease. Trends Immunol 36(6):364–373. https://doi.org/10.1016/j.it.2015.04.007
doi: 10.1016/j.it.2015.04.007
pubmed: 26001312
pmcid: 4786070
Hsiao HY et al (2014) Inhibition of soluble tumor necrosis factor is therapeutic in Huntington’s disease. Hum Mol Genet 23(16):4328–4344. https://doi.org/10.1093/hmg/ddu151
doi: 10.1093/hmg/ddu151
pubmed: 24698979
Tai YF et al (2007) Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 130(Pt 7):1759–1766. https://doi.org/10.1093/brain/awm044
doi: 10.1093/brain/awm044
pubmed: 17400599
Valadão PAC et al (2020) Inflammation in Huntington’s disease: a few new twists on an old tale. J Neuroimmunol 348:577380. https://doi.org/10.1016/j.jneuroim.2020.577380
doi: 10.1016/j.jneuroim.2020.577380
pubmed: 32896821
Martino G et al (2002) Inflammation in multiple sclerosis: the good, the bad, and the complex. Lancet Neurol 1(8):499–509. https://doi.org/10.1016/s1474-4422(02)00223-5
doi: 10.1016/s1474-4422(02)00223-5
pubmed: 12849335
Thompson AJ et al (2018) Multiple sclerosis. Lancet 391(10130):1622–1636. https://doi.org/10.1016/s0140-6736(18)30481-1
doi: 10.1016/s0140-6736(18)30481-1
pubmed: 29576504
Browne P et al (2014) Atlas of Multiple Sclerosis 2013: a growing global problem with widespread inequity. Neurology 83(11):1022–1024. https://doi.org/10.1212/wnl.0000000000000768
doi: 10.1212/wnl.0000000000000768
pubmed: 25200713
pmcid: 4162299
Noseworthy JH et al (2000) Multiple sclerosis. N Engl J Med 343(13):938–952. https://doi.org/10.1056/nejm200009283431307
doi: 10.1056/nejm200009283431307
pubmed: 11006371
Lassmann H, Brück W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7(3):115–121. https://doi.org/10.1016/s1471-4914(00)01909-2
doi: 10.1016/s1471-4914(00)01909-2
pubmed: 11286782
Baranzini SE, Oksenberg JR (2017) The genetics of multiple sclerosis: from 0 to 200 in 50 years. Trends Genet 33(12):960–970. https://doi.org/10.1016/j.tig.2017.09.004
doi: 10.1016/j.tig.2017.09.004
pubmed: 28987266
pmcid: 5701819
Howard J, Trevick S, Younger DS (2016) Epidemiology of multiple sclerosis. Neurol Clin 34(4):919–939. https://doi.org/10.1016/j.ncl.2016.06.016
doi: 10.1016/j.ncl.2016.06.016
pubmed: 27720001
Sadovnick AD, Baird PA (1988) The familial nature of multiple sclerosis: age-corrected empiric recurrence risks for children and siblings of patients. Neurology 38(6):990–991. https://doi.org/10.1212/wnl.38.6.990
doi: 10.1212/wnl.38.6.990
pubmed: 3368082
Bagnato F, Hametner S, Welch EB (2013) Visualizing iron in multiple sclerosis. Magn Reson Imaging 31(3):376–384. https://doi.org/10.1016/j.mri.2012.11.011
doi: 10.1016/j.mri.2012.11.011
pubmed: 23347601
pmcid: 4776767
Pedchenko TV, LeVine SM (1998) Desferrioxamine suppresses experimental allergic encephalomyelitis induced by MBP in SJL mice. J Neuroimmunol 84(2):188–197. https://doi.org/10.1016/s0165-5728(97)00256-7
doi: 10.1016/s0165-5728(97)00256-7
pubmed: 9628462
Milo R et al (2020) The temporal and causal relationship between inflammation and neurodegeneration in multiple sclerosis. Mult Scler 26(8):876–886. https://doi.org/10.1177/1352458519886943
doi: 10.1177/1352458519886943
pubmed: 31682184
Gharagozloo M et al (2017) NLR-dependent regulation of inflammation in multiple sclerosis. Front Immunol 8:2012. https://doi.org/10.3389/fimmu.2017.02012
doi: 10.3389/fimmu.2017.02012
pubmed: 29403486
Reale M et al (2015) Nicotinic receptor activation negatively modulates pro-inflammatory cytokine production in multiple sclerosis patients. Int Immunopharmacol 29(1):152–157. https://doi.org/10.1016/j.intimp.2015.06.034
doi: 10.1016/j.intimp.2015.06.034
pubmed: 26209886
Reale M et al (2012) Relation between pro-inflammatory cytokines and acetylcholine levels in relapsing-remitting multiple sclerosis patients. Int J Mol Sci 13(10):12656–12664. https://doi.org/10.3390/ijms131012656
doi: 10.3390/ijms131012656
pubmed: 23202919
pmcid: 3497293
Voet S, Prinz M, van Loo G (2019) Microglia in central nervous system inflammation and multiple sclerosis pathology. Trends Mol Med 25(2):112–123. https://doi.org/10.1016/j.molmed.2018.11.005
doi: 10.1016/j.molmed.2018.11.005
pubmed: 30578090
Stampanoni Bassi M et al (2018) Delayed treatment of MS is associated with high CSF levels of IL-6 and IL-8 and worse future disease course. J Neurol 265(11):2540–2547. https://doi.org/10.1007/s00415-018-8994-5
doi: 10.1007/s00415-018-8994-5
pubmed: 30167879
Lévesque SA et al (2016) Myeloid cell transmigration across the CNS vasculature triggers IL-1β-driven neuroinflammation during autoimmune encephalomyelitis in mice. J Exp Med 213(6):929–949. https://doi.org/10.1084/jem.20151437
doi: 10.1084/jem.20151437
pubmed: 27139491
pmcid: 4886360
Sutton C et al (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203(7):1685–1691. https://doi.org/10.1084/jem.20060285
doi: 10.1084/jem.20060285
pubmed: 16818675
pmcid: 2118338
Storer PD et al (2005) Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis. J Neuroimmunol 161(1–2):113–122. https://doi.org/10.1016/j.jneuroim.2004.12.015
doi: 10.1016/j.jneuroim.2004.12.015
pubmed: 15748950
Cignarella F et al (2020) TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol 140(4):513–534. https://doi.org/10.1007/s00401-020-02193-z
doi: 10.1007/s00401-020-02193-z
pubmed: 32772264
pmcid: 7498497
Rossi S et al (2014) Cerebrospinal fluid detection of interleukin-1β in phase of remission predicts disease progression in multiple sclerosis. J Neuroinflammation 11:32. https://doi.org/10.1186/1742-2094-11-32
doi: 10.1186/1742-2094-11-32
pubmed: 24548694
pmcid: 3975953
Centonze D et al (2009) Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 29(11):3442–3452. https://doi.org/10.1523/jneurosci.5804-08.2009
doi: 10.1523/jneurosci.5804-08.2009
pubmed: 19295150
pmcid: 6665268
Stampanoni Bassi M et al (2018) Platelet-derived growth factor predicts prolonged relapse-free period in multiple sclerosis. J Neuroinflammation 15(1):108. https://doi.org/10.1186/s12974-018-1150-4
doi: 10.1186/s12974-018-1150-4
pubmed: 29655371
pmcid: 5899838
Hulisz D (2018) Amyotrophic lateral sclerosis: disease state overview. Am J Manag Care 24(15 Suppl):S320-s326
pubmed: 30207670
Hardiman O et al (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3:17071. https://doi.org/10.1038/nrdp.2017.71
doi: 10.1038/nrdp.2017.71
pubmed: 28980624
Figueroa-Romero C et al (2020) Early life metal dysregulation in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 7(6):872–882. https://doi.org/10.1002/acn3.51006
doi: 10.1002/acn3.51006
pubmed: 32438517
pmcid: 7318091
Peters S et al (2021) Blood metal levels and amyotrophic lateral sclerosis risk: a prospective cohort. Ann Neurol 89(1):125–133. https://doi.org/10.1002/ana.25932
doi: 10.1002/ana.25932
pubmed: 33068316
Kiernan MC et al (2011) Amyotrophic lateral sclerosis. Lancet 377(9769):942–955. https://doi.org/10.1016/s0140-6736(10)61156-7
doi: 10.1016/s0140-6736(10)61156-7
pubmed: 21296405
Wang T et al (2022) Ferroptosis mediates selective motor neuron death in amyotrophic lateral sclerosis. Cell Death Differ 29(6):1187–1198. https://doi.org/10.1038/s41418-021-00910-z
doi: 10.1038/s41418-021-00910-z
pubmed: 34857917
White WL (2011) Erratum to: Why I hate the index finger. Hand (N Y) 6(2):233. https://doi.org/10.1007/s11552-011-9321-0
doi: 10.1007/s11552-011-9321-0
pubmed: 21776199
Thompson AG, Turner MR (2019) Untangling neuroinflammation in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 90(12):1303–1304. https://doi.org/10.1136/jnnp-2019-321242
doi: 10.1136/jnnp-2019-321242
pubmed: 31296587
Mitchell RM et al (2009) A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology 72(1):14–19. https://doi.org/10.1212/01.wnl.0000333251.36681.a5
doi: 10.1212/01.wnl.0000333251.36681.a5
pubmed: 18987350
McCauley ME, Baloh RH (2019) Inflammation in ALS/FTD pathogenesis. Acta Neuropathol 137(5):715–730. https://doi.org/10.1007/s00401-018-1933-9
doi: 10.1007/s00401-018-1933-9
pubmed: 30465257
Lyon MS et al (2019) Inflammation, immunity, and amyotrophic lateral sclerosis: I. Etiology and pathology. Muscle Nerve 59(1):10–22. https://doi.org/10.1002/mus.26289
doi: 10.1002/mus.26289
pubmed: 29979464
McGeer PL, McGeer EG (2002) Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26(4):459–470. https://doi.org/10.1002/mus.10191
doi: 10.1002/mus.10191
pubmed: 12362410
Mishra PS et al (2017) Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia. J Neuroinflammation 14(1):251. https://doi.org/10.1186/s12974-017-1028-x
doi: 10.1186/s12974-017-1028-x
pubmed: 29246232
pmcid: 5732516
Crisafulli SG et al (2018) Therapeutic strategies under development targeting inflammatory mechanisms in amyotrophic lateral sclerosis. Mol Neurobiol 55(4):2789–2813. https://doi.org/10.1007/s12035-017-0532-4
doi: 10.1007/s12035-017-0532-4
pubmed: 28455693
Henkel JS et al (2004) Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 55(2):221–235. https://doi.org/10.1002/ana.10805
doi: 10.1002/ana.10805
pubmed: 14755726
Turner MR et al (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 15(3):601–609. https://doi.org/10.1016/j.nbd.2003.12.012
doi: 10.1016/j.nbd.2003.12.012
pubmed: 15056468
Beers DR et al (2006) Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 103(43):16021–6. https://doi.org/10.1073/pnas.0607423103
doi: 10.1073/pnas.0607423103
pubmed: 17043238
pmcid: 1613228
Boillée S, VandeVelde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52(1):39–59. https://doi.org/10.1016/j.neuron.2006.09.018
doi: 10.1016/j.neuron.2006.09.018
pubmed: 17015226
Zhao W et al (2010) Extracellular mutant SOD1 induces microglial-mediated motoneuron injury. Glia 58(2):231–243. https://doi.org/10.1002/glia.20919
doi: 10.1002/glia.20919
pubmed: 19672969
pmcid: 2784168
Frakes AE et al (2014) Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron 81(5):1009–1023. https://doi.org/10.1016/j.neuron.2014.01.013
doi: 10.1016/j.neuron.2014.01.013
pubmed: 24607225
pmcid: 3978641
Källstig E, McCabe BD, Schneider BL (2021) The Links between ALS and NF-κB. Int J Mol Sci 22(8). https://doi.org/10.3390/ijms22083875
Johansson A et al (2007) Evidence for astrocytosis in ALS demonstrated by [11C](L)-deprenyl-D2 PET. J Neurol Sci 255(1–2):17–22. https://doi.org/10.1016/j.jns.2007.01.057
doi: 10.1016/j.jns.2007.01.057
pubmed: 17346749
Johann S et al (2015) NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia 63(12):2260–2273. https://doi.org/10.1002/glia.22891
doi: 10.1002/glia.22891
pubmed: 26200799
Guttenplan KA et al (2020) Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat Commun 11(1):3753. https://doi.org/10.1038/s41467-020-17514-9
doi: 10.1038/s41467-020-17514-9
pubmed: 32719333
pmcid: 7385161
Meissner F, Molawi K, Zychlinsky A (2010) Mutant superoxide dismutase 1-induced IL-1beta accelerates ALS pathogenesis. Proc Natl Acad Sci U S A 107(29):13046–13050. https://doi.org/10.1073/pnas.1002396107
doi: 10.1073/pnas.1002396107
pubmed: 20616033
pmcid: 2919927
Gugliandolo A et al (2018) NLRP3 inflammasome activation in a transgenic amyotrophic lateral sclerosis model. Inflammation 41(1):93–103. https://doi.org/10.1007/s10753-017-0667-5
doi: 10.1007/s10753-017-0667-5
pubmed: 28936769
Pasinelli P et al (1998) Caspase-1 is activated in neural cells and tissue with amyotrophic lateral sclerosis-associated mutations in copper-zinc superoxide dismutase. Proc Natl Acad Sci U S A 95(26):15763–15768. https://doi.org/10.1073/pnas.95.26.15763
doi: 10.1073/pnas.95.26.15763
pubmed: 9861044
pmcid: 28118
Lehmann S et al (2018) Expression profile of pattern recognition receptors in skeletal muscle of SOD1((G93A)) amyotrophic lateral sclerosis (ALS) mice and sporadic ALS patients. Neuropathol Appl Neurobiol 44(6):606–627. https://doi.org/10.1111/nan.12483
doi: 10.1111/nan.12483
pubmed: 29575052
Yu CH et al (2020) TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 183(3):636-649.e18. https://doi.org/10.1016/j.cell.2020.09.020
doi: 10.1016/j.cell.2020.09.020
pubmed: 33031745
pmcid: 7599077
Chen S et al (2017) RIPK1/RIPK3/MLKL-mediated necroptosis contributes to compression-induced rat nucleus pulposus cells death. Apoptosis 22(5):626–638. https://doi.org/10.1007/s10495-017-1358-2
doi: 10.1007/s10495-017-1358-2
pubmed: 28289909
Ito Y et al (2016) RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 353(6299):603–608. https://doi.org/10.1126/science.aaf6803
doi: 10.1126/science.aaf6803
pubmed: 27493188
pmcid: 5444917
Xiong L et al (2022) Inflammation-dependent oxidative stress metabolites as a hallmark of amyotrophic lateral sclerosis. Free Radic Biol Med 178:125–133. https://doi.org/10.1016/j.freeradbiomed.2021.11.031
doi: 10.1016/j.freeradbiomed.2021.11.031
pubmed: 34871763
Grandjean P, Landrigan PJ (2014) Neurobehavioural effects of developmental toxicity. Lancet Neurol 13(3):330–338. https://doi.org/10.1016/s1474-4422(13)70278-3
doi: 10.1016/s1474-4422(13)70278-3
pubmed: 24556010
pmcid: 4418502
Pandey S et al (2018) Novel biomarker for neurodegenerative diseases- motor neuron disease (MND), cerebellar ataxia (CA) and Parkinson’s disease (PD). Clin Chim Acta 485:258–261. https://doi.org/10.1016/j.cca.2018.07.021
doi: 10.1016/j.cca.2018.07.021
pubmed: 30006282
Hall AH (2002) Chronic arsenic poisoning. Toxicol Lett 128(1–3):69–72. https://doi.org/10.1016/s0378-4274(01)00534-3
doi: 10.1016/s0378-4274(01)00534-3
pubmed: 11869818
Kaur S, Kamli MR, Ali A (2011) Role of arsenic and its resistance in nature. Can J Microbiol 57(10):769–774. https://doi.org/10.1139/w11-062
doi: 10.1139/w11-062
pubmed: 21936668
Garelick H et al (2008) Arsenic pollution sources. Rev Environ Contam Toxicol 197:17–60. https://doi.org/10.1007/978-0-387-79284-2_2
doi: 10.1007/978-0-387-79284-2_2
pubmed: 18982996
Vibol S, Hashim JH, Sarmani S (2015) Neurobehavioral effects of arsenic exposure among secondary school children in the Kandal Province, Cambodia. Environ Res 137:329–337. https://doi.org/10.1016/j.envres.2014.12.001
doi: 10.1016/j.envres.2014.12.001
pubmed: 25601736
Das AK et al (2010) Protective effect of Corchorus olitorius leaves on sodium arsenite-induced toxicity in experimental rats. Food Chem Toxicol 48(1):326–335. https://doi.org/10.1016/j.fct.2009.10.020
doi: 10.1016/j.fct.2009.10.020
pubmed: 19852998
Osuna-Martínez CC et al (2021) Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review. Sci Total Environ 752:142062. https://doi.org/10.1016/j.scitotenv.2020.142062
doi: 10.1016/j.scitotenv.2020.142062
pubmed: 33207489
Sinha D, Prasad P (2020) Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. J Appl Toxicol 40(1):87–131. https://doi.org/10.1002/jat.3823
doi: 10.1002/jat.3823
pubmed: 31273810
Mukherjee SC et al (2003) Neuropathy in arsenic toxicity from groundwater arsenic contamination in West Bengal, India. J Environ Sci Health A Tox Hazard Subst Environ Eng 38(1):165–183. https://doi.org/10.1081/ese-120016887
doi: 10.1081/ese-120016887
pubmed: 12635825
Brinkel J, Khan MH, Kraemer A (2009) A systematic review of arsenic exposure and its social and mental health effects with special reference to Bangladesh. Int J Environ Res Public Health 6(5):1609–1619. https://doi.org/10.3390/ijerph6051609
doi: 10.3390/ijerph6051609
pubmed: 19543409
pmcid: 2697931
Rodríguez VM et al (1998) Effects of oral exposure to mining waste on in vivo dopamine release from rat striatum. Environ Health Perspect 106(8):487–491. https://doi.org/10.1289/ehp.106-1533203
doi: 10.1289/ehp.106-1533203
pubmed: 9681976
pmcid: 1533203
Mochizuki H (2019) Arsenic Neurotoxicity in Humans. Int J Mol Sci 20(14). https://doi.org/10.3390/ijms20143418
Li D et al (2009) Developmental mechanisms of arsenite toxicity in zebrafish (Danio rerio) embryos. Aquat Toxicol 91(3):229–237. https://doi.org/10.1016/j.aquatox.2008.11.007
doi: 10.1016/j.aquatox.2008.11.007
pubmed: 19110324
Wang X et al (2021) Association of arsenic exposure and cognitive impairment: a population-based cross-sectional study in China. Neurotoxicology 82:100–107. https://doi.org/10.1016/j.neuro.2020.11.009
doi: 10.1016/j.neuro.2020.11.009
pubmed: 33249123
WHO (2022) Standard for arsenic in drinking water. Web. https://www.who.int/news-room/fact-sheets/detail/arsenic
Wang B et al (2022) Arsenic exposure analysis for children living in central China: from ingestion exposure to biomarkers. Chemosphere 287(Pt 2):132194. https://doi.org/10.1016/j.chemosphere.2021.132194
doi: 10.1016/j.chemosphere.2021.132194
pubmed: 34509767
Srivastava S et al (2009) Arsenic exacerbates atherosclerotic lesion formation and inflammation in ApoE-/- mice. Toxicol Appl Pharmacol 241(1):90–100. https://doi.org/10.1016/j.taap.2009.08.004
doi: 10.1016/j.taap.2009.08.004
pubmed: 19682479
pmcid: 4414341
Saha S et al (2018) Ameliorative role of genistein against age-dependent chronic arsenic toxicity in murine brains via the regulation of oxidative stress and inflammatory signaling cascades. J Nutr Biochem 55:26–40. https://doi.org/10.1016/j.jnutbio.2017.11.010
doi: 10.1016/j.jnutbio.2017.11.010
pubmed: 29331881
Mao J et al (2016) Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway. Toxicol Appl Pharmacol 303:79–89. https://doi.org/10.1016/j.taap.2016.05.003
doi: 10.1016/j.taap.2016.05.003
pubmed: 27174766
Prasad P, Sinha D (2017) Low-level arsenic causes chronic inflammation and suppresses expression of phagocytic receptors. Environ Sci Pollut Res Int 24(12):11708–11721. https://doi.org/10.1007/s11356-017-8744-8
doi: 10.1007/s11356-017-8744-8
pubmed: 28332085
Mo J et al (2011) Altered gene expression by low-dose arsenic exposure in humans and cultured cardiomyocytes: assessment by real-time PCR arrays. Int J Environ Res Public Health 8(6):2090–2108. https://doi.org/10.3390/ijerph8062090
doi: 10.3390/ijerph8062090
pubmed: 21776218
pmcid: 3138013
Dutta K, Prasad P, Sinha D (2015) Chronic low level arsenic exposure evokes inflammatory responses and DNA damage. Int J Hyg Environ Health 218(6):564–574. https://doi.org/10.1016/j.ijheh.2015.06.003
doi: 10.1016/j.ijheh.2015.06.003
pubmed: 26118750
Stigger F et al (2013) Inflammatory response and oxidative stress in developing rat brain and its consequences on motor behavior following maternal administration of LPS and perinatal anoxia. Int J Dev Neurosci 31(8):820–827. https://doi.org/10.1016/j.ijdevneu.2013.10.003
doi: 10.1016/j.ijdevneu.2013.10.003
pubmed: 24140242
Liu X et al (2021) Microglia-derived IL-1β promoted neuronal apoptosis through ER stress-mediated signaling pathway PERK/eIF2α/ATF4/CHOP upon arsenic exposure. J Hazard Mater 417:125997. https://doi.org/10.1016/j.jhazmat.2021.125997
doi: 10.1016/j.jhazmat.2021.125997
pubmed: 34229406
Sun X et al (2017) Arsenic affects inflammatory cytokine expression in Gallus gallus brain tissues. BMC Vet Res 13(1):157. https://doi.org/10.1186/s12917-017-1066-8
doi: 10.1186/s12917-017-1066-8
pubmed: 28583123
pmcid: 5460324
Gan R et al (2023) Curcumin alleviates arsenic trioxide-induced inflammation and pyroptosis via the NF-κB/NLRP3 signaling pathway in the hypothalamus of ducks. Biol Trace Elem Res 201(5):2503–2511. https://doi.org/10.1007/s12011-022-03321-4
doi: 10.1007/s12011-022-03321-4
pubmed: 35737258
Tutkun L et al (2019) Arsenic-induced inflammation in workers. Mol Biol Rep 46(2):2371–2378. https://doi.org/10.1007/s11033-019-04694-x
doi: 10.1007/s11033-019-04694-x
pubmed: 30783936
Gong G, O’Bryant SE (2010) The arsenic exposure hypothesis for Alzheimer disease. Alzheimer Dis Assoc Disord 24(4):311–6. https://doi.org/10.1097/WAD.0b013e3181d71bc7
doi: 10.1097/WAD.0b013e3181d71bc7
pubmed: 20473132
Sewell J, Östör A (2022) Emerging injectable therapies for osteoarthritis. Expert Opin Emerg Drugs 27(3):311–320. https://doi.org/10.1080/14728214.2022.2125506
doi: 10.1080/14728214.2022.2125506
pubmed: 36102303
Exley C (2013) Human exposure to aluminium. Environ Sci Process Impacts 15(10):1807–1816. https://doi.org/10.1039/c3em00374d
doi: 10.1039/c3em00374d
pubmed: 23982047
Niu Q (2018) Overview of the relationship between aluminum exposure and health of human being. Adv Exp Med Biol 1091:1–31. https://doi.org/10.1007/978-981-13-1370-7_1
doi: 10.1007/978-981-13-1370-7_1
pubmed: 30315446
Alasfar RH, Isaifan RJ (2021) Aluminum environmental pollution: the silent killer. Environ Sci Pollut Res Int 28(33):44587–44597. https://doi.org/10.1007/s11356-021-14700-0
doi: 10.1007/s11356-021-14700-0
pubmed: 34196863
pmcid: 8364537
Yokel RA (2000) The toxicology of aluminum in the brain: a review. Neurotoxicology 21(5):813–828
pubmed: 11130287
Fernandes RM et al (2020) Preclinical evidences of aluminum-induced neurotoxicity in hippocampus and pre-frontal cortex of rats exposed to low doses. Ecotoxicol Environ Saf 206:111139. https://doi.org/10.1016/j.ecoenv.2020.111139
doi: 10.1016/j.ecoenv.2020.111139
pubmed: 32861963
Walton JR (2009) Functional impairment in aged rats chronically exposed to human range dietary aluminum equivalents. Neurotoxicology 30(2):182–193. https://doi.org/10.1016/j.neuro.2008.11.012
doi: 10.1016/j.neuro.2008.11.012
pubmed: 19109991
Markesbery WR et al (1984) Brain trace element concentrations in aging. Neurobiol Aging 5(1):19–28. https://doi.org/10.1016/0197-4580(84)90081-2
doi: 10.1016/0197-4580(84)90081-2
pubmed: 6738782
Becaria A, Campbell A, Bondy SC (2002) Aluminum as a toxicant. Toxicol Ind Health 18(7):309–320. https://doi.org/10.1191/0748233702th157oa
doi: 10.1191/0748233702th157oa
pubmed: 15068131
Meiri H, Banin E, Roll M (1991) Aluminum ingestion–is it related to dementia? Rev Environ Health 9(4):191–205. https://doi.org/10.1515/reveh.1991.9.4.191
doi: 10.1515/reveh.1991.9.4.191
pubmed: 1842454
Rusina R et al (2011) Higher aluminum concentration in Alzheimer’s disease after Box-Cox data transformation. Neurotox Res 20(4):329–333. https://doi.org/10.1007/s12640-011-9246-y
doi: 10.1007/s12640-011-9246-y
pubmed: 21567285
Shin RW, Lee VM, Trojanowski JQ (1995) Neurofibrillary pathology and aluminum in Alzheimer’s disease. Histol Histopathol 10(4):969–978
pubmed: 8574016
Liu H et al (2020) Neurotoxicity of aluminum oxide nanoparticles and their mechanistic role in dopaminergic neuron injury involving p53-related pathways. J Hazard Mater 392:122312. https://doi.org/10.1016/j.jhazmat.2020.122312
doi: 10.1016/j.jhazmat.2020.122312
pubmed: 32105957
Bondy SC (2010) The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology 31(5):575–581. https://doi.org/10.1016/j.neuro.2010.05.009
doi: 10.1016/j.neuro.2010.05.009
pubmed: 20553758
pmcid: 2946821
Yang L et al (2017) Effect of PGE(2)-EP(s) pathway on primary cultured rat neuron injury caused by aluminum. Oncotarget 8(54):92004–92017. https://doi.org/10.18632/oncotarget.21122
Cao Z et al (2019) Lycopene attenuates aluminum-induced hippocampal lesions by inhibiting oxidative stress-mediated inflammation and apoptosis in the rat. J Inorg Biochem 193:143–151. https://doi.org/10.1016/j.jinorgbio.2019.01.017
doi: 10.1016/j.jinorgbio.2019.01.017
pubmed: 30743053
Zaky A et al (2013) Apurinic/apyrimidinic endonuclease 1 is a key modulator of aluminum-induced neuroinflammation. BMC Neurosci 14:26. https://doi.org/10.1186/1471-2202-14-26
doi: 10.1186/1471-2202-14-26
pubmed: 23497276
pmcid: 3616857
Pogue AI et al (2017) Systemic inflammation in C57BL/6J mice receiving dietary aluminum sulfate; up-regulation of the pro-inflammatory cytokines IL-6 and TNFα, C-reactive protein (CRP) and miRNA-146a in blood sErum. J Alzheimers Dis Parkinsonism 7(6). https://doi.org/10.4172/2161-0460.1000403
Hao W et al (2021) Aluminum impairs cognitive function by activating DDX3X-NLRP3-mediated pyroptosis signaling pathway. Food Chem Toxicol 157:112591. https://doi.org/10.1016/j.fct.2021.112591
doi: 10.1016/j.fct.2021.112591
pubmed: 34614429
Campbell A et al (2004) Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain. J Neurosci Res 75(4):565–572. https://doi.org/10.1002/jnr.10877
doi: 10.1002/jnr.10877
pubmed: 14743440
Ogawa M, Kayama F (2015) A study of the association between urinary aluminum concentration and pre-clinical findings among aluminum-handling and non-handling workers. J Occup Med Toxicol 10:13. https://doi.org/10.1186/s12995-015-0055-8
doi: 10.1186/s12995-015-0055-8
pubmed: 25866547
pmcid: 4393619
Prakash D, Gopinath K, Sudhandiran G (2013) Fisetin enhances behavioral performances and attenuates reactive gliosis and inflammation during aluminum chloride-induced neurotoxicity. Neuromolecular Med 15(1):192–208. https://doi.org/10.1007/s12017-012-8210-1
doi: 10.1007/s12017-012-8210-1
pubmed: 23315010
Zaky A et al (2017) A Combination of resveratrol and curcumin is effective against aluminum chloride-induced neuroinflammation in rats. J Alzheimers Dis 60(s1):S221-s235. https://doi.org/10.3233/jad-161115
doi: 10.3233/jad-161115
pubmed: 28222524
Barceloux DG (1999) Copper. J Toxicol Clin Toxicol 37(2):217–230. https://doi.org/10.1081/clt-100102421
doi: 10.1081/clt-100102421
pubmed: 10382557
Araya M et al (2003) Copper exposure and potential biomarkers of copper metabolism. Biometals 16(1):199–204. https://doi.org/10.1023/a:1020723117584
doi: 10.1023/a:1020723117584
pubmed: 12572679
Scheiber IF, Dringen R (2013) Astrocyte functions in the copper homeostasis of the brain. Neurochem Int 62(5):556–565. https://doi.org/10.1016/j.neuint.2012.08.017
doi: 10.1016/j.neuint.2012.08.017
pubmed: 22982300
Taylor AA et al (2023) Recommended reference values for risk assessment of oral exposure to copper. Risk Anal 43(2):211–218. https://doi.org/10.1111/risa.13906
doi: 10.1111/risa.13906
pubmed: 35194835
Zaidel A, Ma WJ, Angelaki DE (2013) Supervised calibration relies on the multisensory percept. Neuron 80(6):1544–1557. https://doi.org/10.1016/j.neuron.2013.09.026
doi: 10.1016/j.neuron.2013.09.026
pubmed: 24290205
Ozcelik D, Uzun H (2009) Copper intoxication; antioxidant defenses and oxidative damage in rat brain. Biol Trace Elem Res 127(1):45–52. https://doi.org/10.1007/s12011-008-8219-3
doi: 10.1007/s12011-008-8219-3
pubmed: 18784908
Kaler SG (2011) ATP7A-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol 7(1):15–29. https://doi.org/10.1038/nrneurol.2010.180
doi: 10.1038/nrneurol.2010.180
pubmed: 21221114
pmcid: 4214867
Burkhead JL, Gray LW, Lutsenko S (2011) Systems biology approach to Wilson’s disease. Biometals 24(3):455–466. https://doi.org/10.1007/s10534-011-9430-9
doi: 10.1007/s10534-011-9430-9
pubmed: 21380607
pmcid: 3106420
Brewer GJ (2014) Alzheimer’s disease causation by copper toxicity and treatment with zinc. Front Aging Neurosci 6:92. https://doi.org/10.3389/fnagi.2014.00092
doi: 10.3389/fnagi.2014.00092
pubmed: 24860501
pmcid: 4030141
Montes S et al (2014) Copper and copper proteins in Parkinson’s disease. Oxid Med Cell Longev 2014:147251. https://doi.org/10.1155/2014/147251
doi: 10.1155/2014/147251
pubmed: 24672633
pmcid: 3941957
Bourassa MW et al (2014) Metal-deficient aggregates and diminished copper found in cells expressing SOD1 mutations that cause ALS. Front Aging Neurosci 6:110. https://doi.org/10.3389/fnagi.2014.00110
doi: 10.3389/fnagi.2014.00110
pubmed: 24982630
pmcid: 4059277
Voss K et al (2014) Modulation of tau phosphorylation by environmental copper. Transl Neurodegener 3(1):24. https://doi.org/10.1186/2047-9158-3-24
doi: 10.1186/2047-9158-3-24
pubmed: 25671100
pmcid: 4322670
Schrag M et al (2013) Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Neurobiol Dis 59:100–110. https://doi.org/10.1016/j.nbd.2013.07.005
doi: 10.1016/j.nbd.2013.07.005
pubmed: 23867235
Xiao G et al (2013) Huntington disease arises from a combinatory toxicity of polyglutamine and copper binding. Proc Natl Acad Sci U S A 110(37):14995–15000. https://doi.org/10.1073/pnas.1308535110
doi: 10.1073/pnas.1308535110
pubmed: 23980182
pmcid: 3773747
Castro PA et al (2014) Copper-uptake is critical for the down regulation of synapsin and dynamin induced by neocuproine: modulation of synaptic activity in hippocampal neurons. Front Aging Neurosci 6:319. https://doi.org/10.3389/fnagi.2014.00319
doi: 10.3389/fnagi.2014.00319
pubmed: 25520655
pmcid: 4253966
De Riccardis L et al (2018) Copper and ceruloplasmin dyshomeostasis in serum and cerebrospinal fluid of multiple sclerosis subjects. Biochim Biophys Acta Mol Basis Dis 1846(5 Pt A):1828–1838. https://doi.org/10.1016/j.bbadis.2018.03.007
doi: 10.1016/j.bbadis.2018.03.007
Kitazawa M, Hsu HW, Medeiros R (2016) Copper exposure perturbs brain inflammatory responses and impairs clearance of amyloid-beta. Toxicol Sci 152(1):194–204. https://doi.org/10.1093/toxsci/kfw081
doi: 10.1093/toxsci/kfw081
pubmed: 27122238
pmcid: 4922545
Pereira TC, Campos MM, Bogo MR (2016) Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model. J Appl Toxicol 36(7):876–885. https://doi.org/10.1002/jat.3303
doi: 10.1002/jat.3303
pubmed: 26888422
Choo XY et al (2013) Neuroinflammation and copper in Alzheimer’s disease. Int J Alzheimers Dis 2013:145345. https://doi.org/10.1155/2013/145345
doi: 10.1155/2013/145345
pubmed: 24369524
pmcid: 3863554
Lu J et al (2009) Trace amounts of copper exacerbate beta amyloid-induced neurotoxicity in the cholesterol-fed mice through TNF-mediated inflammatory pathway. Brain Behav Immun 23(2):193–203. https://doi.org/10.1016/j.bbi.2008.09.003
doi: 10.1016/j.bbi.2008.09.003
pubmed: 18835350
Sarawi WS et al (2021) Curcumin and nano-curcumin mitigate copper neurotoxicity by modulating oxidative stress, inflammation, and Akt/GSK-3β signaling. Molecules 26(18). https://doi.org/10.3390/molecules26185591
Chen J et al (2023) Low-dose Cu exposure enhanced α-synuclein accumulation associates with mitochondrial impairments in mice model of Parkinson’s disease. Toxicol Lett 387:14–27. https://doi.org/10.1016/j.toxlet.2023.09.004
doi: 10.1016/j.toxlet.2023.09.004
pubmed: 37717680
Zucconi GG et al (2007) Copper deficiency elicits glial and neuronal response typical of neurodegenerative disorders. Neuropathol Appl Neurobiol 33(2):212–225. https://doi.org/10.1111/j.1365-2990.2006.00793.x
doi: 10.1111/j.1365-2990.2006.00793.x
pubmed: 17359362
Jensen A, Bro-Rasmussen F (1992) Environmental cadmium in Europe. Rev Environ Contam Toxicol 125:101–181. https://doi.org/10.1007/978-1-4612-2890-5_3
doi: 10.1007/978-1-4612-2890-5_3
pubmed: 1509176
Ragan HA (1983) The bioavailability of iron, lead and cadmium via gastrointestinal absorption: a review. Sci Total Environ 28:317–326. https://doi.org/10.1016/s0048-9697(83)80029-1
doi: 10.1016/s0048-9697(83)80029-1
pubmed: 6348941
Swiergosz-Kowalewska R (2001) Cadmium distribution and toxicity in tissues of small rodents. Microsc Res Tech 55(3):208–222. https://doi.org/10.1002/jemt.1171
doi: 10.1002/jemt.1171
pubmed: 11747096
Horiguchi H et al (2010) Latest status of cadmium accumulation and its effects on kidneys, bone, and erythropoiesis in inhabitants of the formerly cadmium-polluted Jinzu River Basin in Toyama, Japan, after restoration of rice paddies. Int Arch Occup Environ Health 83(8):953–970. https://doi.org/10.1007/s00420-010-0510-x
doi: 10.1007/s00420-010-0510-x
pubmed: 20130905
Yang Z et al (2007) Cadmium-induced toxicity in rat primary mid-brain neuroglia cultures: role of oxidative stress from microglia. Toxicol Sci 98(2):488–494. https://doi.org/10.1093/toxsci/kfm106
doi: 10.1093/toxsci/kfm106
pubmed: 17483498
Ciesielski T et al (2013) Associations between cadmium exposure and neurocognitive test scores in a cross-sectional study of US adults. Environ Health 12:13. https://doi.org/10.1186/1476-069x-12-13
doi: 10.1186/1476-069x-12-13
pubmed: 23379984
pmcid: 3599125
Ciesielski T et al (2012) Cadmium exposure and neurodevelopmental outcomes in U.S. children. Environ Health Perspect 120(5):758–63. https://doi.org/10.1289/ehp.1104152
doi: 10.1289/ehp.1104152
pubmed: 22289429
pmcid: 3346779
Min JY, Min KB (2016) Blood cadmium levels and Alzheimer’s disease mortality risk in older US adults. Environ Health 15(1):69. https://doi.org/10.1186/s12940-016-0155-7
doi: 10.1186/s12940-016-0155-7
pubmed: 27301955
pmcid: 4908725
Kim JA et al (2012) Heavy metal risk management: case analysis. Toxicol Res 28(3):143–149. https://doi.org/10.5487/tr.2012.28.3.143
doi: 10.5487/tr.2012.28.3.143
pubmed: 24278603
pmcid: 3834422
Omarova A, Phillips CJ (2007) A meta-analysis of literature data relating to the relationships between cadmium intake and toxicity indicators in humans. Environ Res 103(3):432–440. https://doi.org/10.1016/j.envres.2006.09.006
doi: 10.1016/j.envres.2006.09.006
pubmed: 17109840
Chatterjee M, Kortenkamp A (2022) Cadmium exposures and deteriorations of cognitive abilities: estimation of a reference dose for mixture risk assessments based on a systematic review and confidence rating. Environ Health 21(1):69. https://doi.org/10.1186/s12940-022-00881-9
doi: 10.1186/s12940-022-00881-9
pubmed: 35836177
pmcid: 9281031
Rani A et al (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24(4):378–399. https://doi.org/10.1080/09603123.2013.835032
doi: 10.1080/09603123.2013.835032
pubmed: 24117228
Xu C et al (2016) Rapamycin ameliorates cadmium-induced activation of MAPK pathway and neuronal apoptosis by preventing mitochondrial ROS inactivation of PP2A. Neuropharmacology 105:270–284. https://doi.org/10.1016/j.neuropharm.2016.01.030
doi: 10.1016/j.neuropharm.2016.01.030
pubmed: 26805420
pmcid: 4873321
Zhao R et al (2020) Cadmium induces mitochondrial ROS inactivation of XIAP pathway leading to apoptosis in neuronal cells. Int J Biochem Cell Biol 121:105715. https://doi.org/10.1016/j.biocel.2020.105715
doi: 10.1016/j.biocel.2020.105715
pubmed: 32035180
pmcid: 7045337
Huat TJ et al (2019) Metal toxicity links to Alzheimer’s disease and neuroinflammation. J Mol Biol 431(9):1843–1868. https://doi.org/10.1016/j.jmb.2019.01.018
doi: 10.1016/j.jmb.2019.01.018
pubmed: 30664867
pmcid: 6475603
Phuagkhaopong S et al (2017) Cadmium-induced IL-6 and IL-8 expression and release from astrocytes are mediated by MAPK and NF-κB pathways. Neurotoxicology 60:82–91. https://doi.org/10.1016/j.neuro.2017.03.001
doi: 10.1016/j.neuro.2017.03.001
pubmed: 28288823
Yuan Y et al (2015) The role of mitogen-activated protein kinase in cadmium-induced primary rat cerebral cortical neurons apoptosis via a mitochondrial apoptotic pathway. J Trace Elem Med Biol 29:275–283. https://doi.org/10.1016/j.jtemb.2014.06.006
doi: 10.1016/j.jtemb.2014.06.006
pubmed: 25043952
Park YK, Hong H, Jang BC (2012) Transcriptional and translational regulation of COX-2 expression by cadmium in C6 glioma cells. Int J Mol Med 30(4):960–966. https://doi.org/10.3892/ijmm.2012.1052
doi: 10.3892/ijmm.2012.1052
pubmed: 22767315
Cai J et al (2021) NLRP3 inflammasome mediated pyroptosis is involved in cadmium exposure-induced neuroinflammation through the IL-1β/IkB-α-NF-κB-NLRP3 feedback loop in swine. Toxicology 453:152720. https://doi.org/10.1016/j.tox.2021.152720
doi: 10.1016/j.tox.2021.152720
pubmed: 33592257
Khan A et al (2019) Caffeine modulates cadmium-induced oxidative stress, neuroinflammation, and cognitive impairments by regulating Nrf-2/HO-1 In vivo and in vitro. J Clin Med 8(5). https://doi.org/10.3390/jcm8050680
Alam SI et al (2021) Alpha-linolenic acid impedes cadmium-induced oxidative stress, neuroinflammation, and neurodegeneration in mouse brain. Cells 10(9). https://doi.org/10.3390/cells10092274
Kim J, Lee Y, Yang M (2014) Environmental exposure to lead (Pb) and variations in its susceptibility. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 32(2):159–185. https://doi.org/10.1080/10590501.2014.907461
doi: 10.1080/10590501.2014.907461
pubmed: 24875442
Brown EE et al (2019) Lead (Pb) in Alzheimer’s dementia: a systematic review of human case- control studies. Curr Alzheimer Res 16(4):353–361. https://doi.org/10.2174/1567205016666190311101445
doi: 10.2174/1567205016666190311101445
pubmed: 30854970
Machoń-Grecka A et al (2022) Angiogenesis and lead (Pb): is there a connection? Drug Chem Toxicol 45(2):589–593. https://doi.org/10.1080/01480545.2020.1734607
doi: 10.1080/01480545.2020.1734607
pubmed: 32126859
Cory-Slechta DA (1990) Lead exposure during advanced age: alterations in kinetics and biochemical effects. Toxicol Appl Pharmacol 104(1):67–78. https://doi.org/10.1016/0041-008x(90)90283-z
doi: 10.1016/0041-008x(90)90283-z
pubmed: 2360209
Reuben A (2018) Childhood lead exposure and adult neurodegenerative disease. J Alzheimers Dis 64(1):17–42. https://doi.org/10.3233/jad-180267
doi: 10.3233/jad-180267
pubmed: 29865081
pmcid: 6454899
Hauptman M et al (2021) Individual- and community-level factors associated with detectable and elevated blood lead levels in US children: results from a national clinical laboratory. JAMA Pediatr 175(12):1252–1260. https://doi.org/10.1001/jamapediatrics.2021.3518
doi: 10.1001/jamapediatrics.2021.3518
pubmed: 34570188
Reuben A et al (2020) Association of childhood lead exposure with MRI measurements of structural brain integrity in midlife. JAMA 324(19):1970–1979. https://doi.org/10.1001/jama.2020.19998
doi: 10.1001/jama.2020.19998
pubmed: 33201203
Allen KA (2015) Is prenatal lead exposure a concern in infancy? What is the evidence? Adv Neonatal Care 15(6):416–420. https://doi.org/10.1097/anc.0000000000000224
doi: 10.1097/anc.0000000000000224
pubmed: 26372041
Ettinger AS et al (2004) Effect of breast milk lead on infant blood lead levels at 1 month of age. Environ Health Perspect 112(14):1381–1385. https://doi.org/10.1289/ehp.6616
doi: 10.1289/ehp.6616
pubmed: 15471729
pmcid: 1247564
Jakubowski M (2011) Low-level environmental lead exposure and intellectual impairment in children–the current concepts of risk assessment. Int J Occup Med Environ Health 24(1):1–7. https://doi.org/10.2478/s13382-011-0009-z
doi: 10.2478/s13382-011-0009-z
pubmed: 21468897
Garza A, Vega R, Soto E (2006) Cellular mechanisms of lead neurotoxicity. Med Sci Monit 12(3):Ra57-65
pubmed: 16501435
Kumawat KL et al (2014) Acute exposure to lead acetate activates microglia and induces subsequent bystander neuronal death via caspase-3 activation. Neurotoxicology 41:143–153. https://doi.org/10.1016/j.neuro.2014.02.002
doi: 10.1016/j.neuro.2014.02.002
pubmed: 24530660
He P et al (2021) Blood lead, systemic inflammation, and blood pressure: exploring associations and mediation effects in workers exposed to lead. Biol Trace Elem Res 199(7):2573–2581. https://doi.org/10.1007/s12011-020-02397-0
doi: 10.1007/s12011-020-02397-0
pubmed: 32959337
Kasten-Jolly J, Heo Y, Lawrence DA (2011) Central nervous system cytokine gene expression: modulation by lead. J Biochem Mol Toxicol 25(1):41–54. https://doi.org/10.1002/jbt.20358
doi: 10.1002/jbt.20358
pubmed: 21322097
pmcid: 3635043
Li N et al (2015) The effects of early life lead exposure on the expression of interleukin (IL) 1β, IL-6, and glial fibrillary acidic protein in the hippocampus of mouse pups. Hum Exp Toxicol 34(4):357–363. https://doi.org/10.1177/0960327114529451
doi: 10.1177/0960327114529451
pubmed: 25028260
Yang W et al (2019) Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food Chem Toxicol 134:110824. https://doi.org/10.1016/j.fct.2019.110824
doi: 10.1016/j.fct.2019.110824
pubmed: 31539617
Liu JT et al (2015) Lead exposure induced microgliosis and astrogliosis in hippocampus of young mice potentially by triggering TLR4-MyD88-NFκB signaling cascades. Toxicol Lett 239(2):97–107. https://doi.org/10.1016/j.toxlet.2015.09.015
doi: 10.1016/j.toxlet.2015.09.015
pubmed: 26386401
Lu LL et al (2022) Therapeutic effects of sodium para-aminosalicylic acid on cognitive deficits and activated ERK1/2-p90(RSK)/NF-κB inflammatory pathway in Pb-exposed rats. Biol Trace Elem Res 200(6):2807–2815. https://doi.org/10.1007/s12011-021-02874-0
doi: 10.1007/s12011-021-02874-0
pubmed: 34398420
Aschner M, Erikson K (2017) Manganese. Adv Nutr 8(3):520–521. https://doi.org/10.3945/an.117.015305
doi: 10.3945/an.117.015305
pubmed: 28507016
pmcid: 5421128
Balachandran RC et al (2020) Brain manganese and the balance between essential roles and neurotoxicity. J Biol Chem 295(19):6312–6329. https://doi.org/10.1074/jbc.REV119.009453
doi: 10.1074/jbc.REV119.009453
pubmed: 32188696
pmcid: 7212623
Aydemir TB et al (2020) Intestine-specific deletion of metal transporter Zip14 (Slc39a14) causes brain manganese overload and locomotor defects of manganism. Am J Physiol Gastrointest Liver Physiol 318(4):G673-g681. https://doi.org/10.1152/ajpgi.00301.2019
doi: 10.1152/ajpgi.00301.2019
pubmed: 32003605
pmcid: 7191460
Milton B et al (2017) Modeling U-shaped dose-response curves for manganese using categorical regression. Neurotoxicology 58:217–225. https://doi.org/10.1016/j.neuro.2016.10.001
doi: 10.1016/j.neuro.2016.10.001
pubmed: 27720796
Finley JW (2004) Does environmental exposure to manganese pose a health risk to healthy adults? Nutr Rev 62(4):148–153. https://doi.org/10.1111/j.1753-4887.2004.tb00037.x
doi: 10.1111/j.1753-4887.2004.tb00037.x
pubmed: 15141430
Zoni S, Lucchini RG (2013) Manganese exposure: cognitive, motor and behavioral effects on children: a review of recent findings. Curr Opin Pediatr 25(2):255–260. https://doi.org/10.1097/MOP.0b013e32835e906b
doi: 10.1097/MOP.0b013e32835e906b
pubmed: 23486422
pmcid: 4073890
Bowler RM et al (2011) Prospective study on neurotoxic effects in manganese-exposed bridge construction welders. Neurotoxicology 32(5):596–605. https://doi.org/10.1016/j.neuro.2011.06.004
doi: 10.1016/j.neuro.2011.06.004
pubmed: 21762725
Haynes EN et al (2015) Manganese exposure and neurocognitive outcomes in rural school-age children: the communities actively researching exposure study (Ohio, USA). Environ Health Perspect 123(10):1066–1071. https://doi.org/10.1289/ehp.1408993
doi: 10.1289/ehp.1408993
pubmed: 25902278
pmcid: 4590758
Carvalho CF et al (2014) Elevated airborne manganese and low executive function in school-aged children in Brazil. Neurotoxicology 45:301–308. https://doi.org/10.1016/j.neuro.2013.11.006
doi: 10.1016/j.neuro.2013.11.006
pubmed: 24308913
Budinger D et al (2021) The role of manganese dysregulation in neurological disease: emerging evidence. Lancet Neurol 20(11):956–968. https://doi.org/10.1016/s1474-4422(21)00238-6
doi: 10.1016/s1474-4422(21)00238-6
pubmed: 34687639
Chen CJ et al (2006) Manganese modulates pro-inflammatory gene expression in activated glia. Neurochem Int 49(1):62–71. https://doi.org/10.1016/j.neuint.2005.12.020
doi: 10.1016/j.neuint.2005.12.020
pubmed: 16488514
Tjalkens RB, Popichak KA, Kirkley KA (2017) Inflammatory activation of microglia and astrocytes in manganese neurotoxicity. Adv Neurobiol 18:159–181. https://doi.org/10.1007/978-3-319-60189-2_8
doi: 10.1007/978-3-319-60189-2_8
pubmed: 28889267
pmcid: 6462217
Aschner M, Gannon M, Kimelberg HK (1992) Manganese uptake and efflux in cultured rat astrocytes. J Neurochem 58(2):730–735. https://doi.org/10.1111/j.1471-4159.1992.tb09778.x
doi: 10.1111/j.1471-4159.1992.tb09778.x
pubmed: 1729413
Morello M et al (2008) Sub-cellular localization of manganese in the basal ganglia of normal and manganese-treated rats An electron spectroscopy imaging and electron energy-loss spectroscopy study. Neurotoxicology 29(1):60–72. https://doi.org/10.1016/j.neuro.2007.09.001
doi: 10.1016/j.neuro.2007.09.001
pubmed: 17936361
Sidoryk-Wegrzynowicz M, Aschner M (2013) Manganese toxicity in the central nervous system: the glutamine/glutamate-γ-aminobutyric acid cycle. J Intern Med 273(5):466–477. https://doi.org/10.1111/joim.12040
doi: 10.1111/joim.12040
pubmed: 23360507
pmcid: 3633698
Popichak KA et al (2018) Glial-neuronal signaling mechanisms underlying the neuroinflammatory effects of manganese. J Neuroinflammation 15(1):324. https://doi.org/10.1186/s12974-018-1349-4
doi: 10.1186/s12974-018-1349-4
pubmed: 30463564
pmcid: 6247759
Moreno JA et al (2008) Manganese potentiates nuclear factor-kappaB-dependent expression of nitric oxide synthase 2 in astrocytes by activating soluble guanylate cyclase and extracellular responsive kinase signaling pathways. J Neurosci Res 86(9):2028–2038. https://doi.org/10.1002/jnr.21640
doi: 10.1002/jnr.21640
pubmed: 18335517
pmcid: 4618683
Perl DP, Olanow CW (2007) The neuropathology of manganese-induced Parkinsonism. J Neuropathol Exp Neurol 66(8):675–682. https://doi.org/10.1097/nen.0b013e31812503cf
doi: 10.1097/nen.0b013e31812503cf
pubmed: 17882011
Qi Z et al (2019) The effect of manganese exposure on GnRH secretion via Nrf2/mGluR5/COX-2/PGE2/signaling pathway. Toxicol Ind Health 35(3):211–227. https://doi.org/10.1177/0748233719825720
doi: 10.1177/0748233719825720
pubmed: 30862296
Nkpaa KW et al (2019) Ethanol via regulation of NF-κB/p53 signaling pathway increases manganese-induced inflammation and apoptosis in hypothalamus of rats. Biol Trace Elem Res 190(1):101–108. https://doi.org/10.1007/s12011-018-1535-3
doi: 10.1007/s12011-018-1535-3
pubmed: 30284675
Pajarillo E et al (2022) Deletion of RE1-silencing transcription factor in striatal astrocytes exacerbates manganese-induced neurotoxicity in mice. Glia 70(10):1886–1901. https://doi.org/10.1002/glia.24226
doi: 10.1002/glia.24226
pubmed: 35638297
pmcid: 9378447
Wang D et al (2017) The role of NLRP3-CASP1 in inflammasome-mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability. Autophagy 13(5):914–927. https://doi.org/10.1080/15548627.2017.1293766
doi: 10.1080/15548627.2017.1293766
pubmed: 28318352
pmcid: 5446056
Saper RB, Rash R (2009) Zinc: an essential micronutrient. Am Fam Physician 79(9):768–772
pubmed: 20141096
pmcid: 2820120
Prasad AS (2007) Zinc: mechanisms of host defense. J Nutr 137(5):1345–1349. https://doi.org/10.1093/jn/137.5.1345
doi: 10.1093/jn/137.5.1345
pubmed: 17449604
Moran VH et al (2012) The relationship between zinc intake and serum/plasma zinc concentration in pregnant and lactating women: a systematic review with dose-response meta-analyses. J Trace Elem Med Biol 26(2–3):74–79. https://doi.org/10.1016/j.jtemb.2012.04.003
doi: 10.1016/j.jtemb.2012.04.003
pubmed: 22613060
Frederickson CJ, Moncrieff DW (1994) Zinc-containing neurons. Biol Signals 3(3):127–139. https://doi.org/10.1159/000109536
doi: 10.1159/000109536
pubmed: 7531563
Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Brain Res Rev 34(3):137–148. https://doi.org/10.1016/s0165-0173(00)00044-8
doi: 10.1016/s0165-0173(00)00044-8
pubmed: 11113504
Szewczyk B, Kubera M, Nowak G (2011) The role of zinc in neurodegenerative inflammatory pathways in depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):693–701. https://doi.org/10.1016/j.pnpbp.2010.02.010
doi: 10.1016/j.pnpbp.2010.02.010
pubmed: 20156515
Kumar A et al (2010) Effect of zinc and paraquat co-exposure on neurodegeneration: Modulation of oxidative stress and expression of metallothioneins, toxicant responsive and transporter genes in rats. Free Radic Res 44(8):950–965. https://doi.org/10.3109/10715762.2010.492832
doi: 10.3109/10715762.2010.492832
pubmed: 20553223
Dexter DT et al (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(Pt 4):1953–1975. https://doi.org/10.1093/brain/114.4.1953
doi: 10.1093/brain/114.4.1953
pubmed: 1832073
Kumar A et al (2012) Involvement of NADPH oxidase and glutathione in zinc-induced dopaminergic neurodegeneration in rats: similarity with paraquat neurotoxicity. Brain Res 1438:48–64. https://doi.org/10.1016/j.brainres.2011.12.028
doi: 10.1016/j.brainres.2011.12.028
pubmed: 22244881
Kawahara M et al (2014) Disruption of zinc homeostasis and the pathogenesis of senile dementia. Metallomics 6(2):209–219. https://doi.org/10.1039/c3mt00257h
doi: 10.1039/c3mt00257h
pubmed: 24247360
Vilella A et al (2018) Reduced plaque size and inflammation in the APP23 mouse model for Alzheimer’s disease after chronic application of polymeric nanoparticles for CNS targeted zinc delivery. J Trace Elem Med Biol 49:210–221. https://doi.org/10.1016/j.jtemb.2017.12.006
doi: 10.1016/j.jtemb.2017.12.006
pubmed: 29325805
Mocchegiani E et al (2013) Zinc: dietary intake and impact of supplementation on immune function in elderly. Age 35(3):839–860. https://doi.org/10.1007/s11357-011-9377-3 . (Dordr)
doi: 10.1007/s11357-011-9377-3
pubmed: 22222917
Prasad AS (2009) Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care 12(6):646–652. https://doi.org/10.1097/MCO.0b013e3283312956
doi: 10.1097/MCO.0b013e3283312956
pubmed: 19710611
Hamada T et al (2020) Zinc-aggravated M1 microglia regulate astrocytic engulfment via P2×7 receptors. J Trace Elem Med Biol 61:126518. https://doi.org/10.1016/j.jtemb.2020.126518
doi: 10.1016/j.jtemb.2020.126518
pubmed: 32353820
Higashi Y et al (2011) Microglial zinc uptake via zinc transporters induces ATP release and the activation of microglia. Glia 59(12):1933–1945. https://doi.org/10.1002/glia.21235
doi: 10.1002/glia.21235
pubmed: 22253048
Rivers-Auty J et al (2021) Zinc status alters Alzheimer’s disease progression through NLRP3-dependent inflammation. J Neurosci 41(13):3025–3038. https://doi.org/10.1523/jneurosci.1980-20.2020
doi: 10.1523/jneurosci.1980-20.2020
pubmed: 33597269
pmcid: 8018890
Chauhan AK et al (2016) Inflammation and B-cell lymphoma-2 associated X protein Regulate zinc-induced apoptotic degeneration of rat nigrostriatal dopaminergic neurons. Mol Neurobiol 53(8):5782–5795. https://doi.org/10.1007/s12035-015-9478-6
doi: 10.1007/s12035-015-9478-6
pubmed: 26497033
D’Orazio N et al (2012) Marine bioactives: pharmacological properties and potential applications against inflammatory diseases. Mar Drugs 10(4):812–833. https://doi.org/10.3390/md10040812
doi: 10.3390/md10040812
pubmed: 22690145
pmcid: 3366677
Cesário R et al (2018) Mercury and methylmercury transport and fate in the water column of Tagus estuary (Portugal). Mar Pollut Bull 127:235–250. https://doi.org/10.1016/j.marpolbul.2017.11.066
doi: 10.1016/j.marpolbul.2017.11.066
pubmed: 29475660
Sakamoto M, Nakamura M, Murata K (2018) Mercury as a global pollutant and mercury exposure assessment and health effects. Nihon Eiseigaku Zasshi 73(3):258–264. https://doi.org/10.1265/jjh.73.258
doi: 10.1265/jjh.73.258
pubmed: 30270289
2nd Clifton JC (2007) Mercury exposure and public health. Pediatr Clin North Am 54(2):237–69, viii. https://doi.org/10.1016/j.pcl.2007.02.005
Eto K (2000) Minamata disease. Neuropathology 20(Suppl):S14–S19. https://doi.org/10.1046/j.1440-1789.2000.00295.x
doi: 10.1046/j.1440-1789.2000.00295.x
pubmed: 11037181
Xu F et al (2012) Mercury-induced toxicity of rat cortical neurons is mediated through N-methyl-D-aspartate receptors. Mol Brain 5:30. https://doi.org/10.1186/1756-6606-5-30
doi: 10.1186/1756-6606-5-30
pubmed: 22980357
pmcid: 3462706
Johnson FO, Atchison WD (2009) The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. Neurotoxicology 30(5):761–765. https://doi.org/10.1016/j.neuro.2009.07.010
doi: 10.1016/j.neuro.2009.07.010
pubmed: 19632272
pmcid: 2761528
Praline J et al (2007) ALS and mercury intoxication: a relationship? Clin Neurol Neurosurg 109(10):880–883. https://doi.org/10.1016/j.clineuro.2007.07.008
doi: 10.1016/j.clineuro.2007.07.008
pubmed: 17719172
Mutter J et al (2004) Alzheimer disease: mercury as pathogenetic factor and apolipoprotein E as a moderator. Neuro Endocrinol Lett 25(5):331–339
pubmed: 15580166
Bose-O'Reilly S et al (2017) Signs and symptoms of mercury-exposed gold miners. Int J Occup Med Environ Health 30(2):249–269. https://doi.org/10.13075/ijomeh.1896.00715
Sun YH et al (2015) Association between dental amalgam fillings and Alzheimer’s disease: a population-based cross-sectional study in Taiwan. Alzheimers Res Ther 7(1):65. https://doi.org/10.1186/s13195-015-0150-1
doi: 10.1186/s13195-015-0150-1
pubmed: 26560125
pmcid: 4642684
Fujimura M et al (2009) Methylmercury induces neuropathological changes with tau hyperphosphorylation mainly through the activation of the c-jun-N-terminal kinase pathway in the cerebral cortex, but not in the hippocampus of the mouse brain. Neurotoxicology 30(6):1000–1007. https://doi.org/10.1016/j.neuro.2009.08.001
doi: 10.1016/j.neuro.2009.08.001
pubmed: 19666049
Carvalho LVB et al (2019) Oxidative stress levels induced by mercury exposure in Amazon juvenile populations in Brazil. Int J Environ Res Public Health 16(15). https://doi.org/10.3390/ijerph16152682
Liu W et al (2019) Methyl-mercury induces apoptosis through ROS-mediated endoplasmic reticulum stress and mitochondrial apoptosis pathways activation in rat cortical neurons. Free Radic Res 53(1):26–44. https://doi.org/10.1080/10715762.2018.1546852
doi: 10.1080/10715762.2018.1546852
pubmed: 30513015
Yang L et al (2020) Toxicity of mercury: molecular evidence. Chemosphere 245:125586. https://doi.org/10.1016/j.chemosphere.2019.125586
doi: 10.1016/j.chemosphere.2019.125586
pubmed: 31881386
Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32(1):1–14
doi: 10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W
pubmed: 10975906
Shanker G et al (2005) Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes. Brain Res Mol Brain Res 137(1–2):11–22. https://doi.org/10.1016/j.molbrainres.2005.02.006
doi: 10.1016/j.molbrainres.2005.02.006
pubmed: 15950756
Pollard KM et al (2019) Mercury-induced inflammation and autoimmunity. Biochim Biophys Acta Gen Subj 1863(12):129299. https://doi.org/10.1016/j.bbagen.2019.02.001
doi: 10.1016/j.bbagen.2019.02.001
pubmed: 30742953
pmcid: 6689266
Shanker G, Syversen T, Aschner M (2003) Astrocyte-mediated methylmercury neurotoxicity. Biol Trace Elem Res 95(1):1–10. https://doi.org/10.1385/bter:95:1:1
doi: 10.1385/bter:95:1:1
pubmed: 14555794
Gardner RM et al (2010) Mercury exposure, serum antinuclear/antinucleolar antibodies, and serum cytokine levels in mining populations in Amazonian Brazil: a cross-sectional study. Environ Res 110(4):345–354. https://doi.org/10.1016/j.envres.2010.02.001
doi: 10.1016/j.envres.2010.02.001
pubmed: 20176347
pmcid: 2873228
Nyland JF et al (2011) Biomarkers of methylmercury exposure immunotoxicity among fish consumers in Amazonian Brazil. Environ Health Perspect 119(12):1733–1738. https://doi.org/10.1289/ehp.1103741
doi: 10.1289/ehp.1103741
pubmed: 21868305
pmcid: 3261989
Garg TK, Chang JY (2006) Methylmercury causes oxidative stress and cytotoxicity in microglia: attenuation by 15-deoxy-delta 12, 14-prostaglandin J2. J Neuroimmunol 171(1–2):17–28. https://doi.org/10.1016/j.jneuroim.2005.09.007
doi: 10.1016/j.jneuroim.2005.09.007
pubmed: 16225932
Ni M et al (2011) Comparative study on the response of rat primary astrocytes and microglia to methylmercury toxicity. Glia 59(5):810–820. https://doi.org/10.1002/glia.21153
doi: 10.1002/glia.21153
pubmed: 21351162
pmcid: 3080116
Alattar A et al (2022) Carveol ameliorates mercury-induced oxidative stress, neuroinflammation, and neurodegeneration in a mouse brain. Neurotoxicology 92:212–226. https://doi.org/10.1016/j.neuro.2022.08.006
doi: 10.1016/j.neuro.2022.08.006
pubmed: 35963490
Sharpe MA, Livingston AD, Baskin DS (2012) Thimerosal-derived ethylmercury is a mitochondrial toxin in human astrocytes: possible role of Fenton chemistry in the oxidation and breakage of mtDNA. J Toxicol 2012:373678. https://doi.org/10.1155/2012/373678
doi: 10.1155/2012/373678
pubmed: 22811707
pmcid: 3395253
Monastero RN et al (2017) Mercury exposure, serum antinuclear antibodies, and serum cytokine levels in the Long Island Study of Seafood Consumption: a cross-sectional study in NY, USA. Environ Res 156:334–340. https://doi.org/10.1016/j.envres.2017.03.037
doi: 10.1016/j.envres.2017.03.037
pubmed: 28390301
Lieu PT et al (2001) The roles of iron in health and disease. Mol Aspects Med 22(1–2):1–87. https://doi.org/10.1016/s0098-2997(00)00006-6
doi: 10.1016/s0098-2997(00)00006-6
pubmed: 11207374
Nairz M, Weiss G (2020) Iron in health and disease. Mol Aspects Med 75:100906. https://doi.org/10.1016/j.mam.2020.100906
doi: 10.1016/j.mam.2020.100906
pubmed: 32977976
Ward RJ et al (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–1060. https://doi.org/10.1016/s1474-4422(14)70117-6
doi: 10.1016/s1474-4422(14)70117-6
pubmed: 25231526
pmcid: 5672917
Rodrigue KM et al (2020) Striatal iron content is linked to reduced fronto-striatal brain function under working memory load. Neuroimage 210:116544. https://doi.org/10.1016/j.neuroimage.2020.116544
doi: 10.1016/j.neuroimage.2020.116544
pubmed: 31972284
Godeau D et al (2021) Return-to-work, disabilities and occupational health in the age of COVID-19. Scand J Work Environ Health 47(5):408–409. https://doi.org/10.5271/sjweh.3960
doi: 10.5271/sjweh.3960
pubmed: 34003294
pmcid: 8259700
Camaschella C (2015) Iron-deficiency anemia. N Engl J Med 372(19):1832–1843. https://doi.org/10.1056/NEJMra1401038
doi: 10.1056/NEJMra1401038
pubmed: 25946282
Pasricha SR et al (2021) Iron deficiency. Lancet 397(10270):233–248. https://doi.org/10.1016/s0140-6736(20)32594-0
doi: 10.1016/s0140-6736(20)32594-0
pubmed: 33285139
Falkingham M et al (2010) The effects of oral iron supplementation on cognition in older children and adults: a systematic review and meta-analysis. Nutr J 9:4. https://doi.org/10.1186/1475-2891-9-4
doi: 10.1186/1475-2891-9-4
pubmed: 20100340
pmcid: 2831810
Rao SS et al (2020) The iron chelator deferiprone improves the phenotype in a mouse model of tauopathy. J Alzheimers Dis 77(2):753–771. https://doi.org/10.3233/jad-200551
doi: 10.3233/jad-200551
pubmed: 32741833
Abe N et al (2020) Microglia and Macrophages in the pathological central and peripheral nervous systems. Cells 9(9). https://doi.org/10.3390/cells9092132
Liu Z et al (2017) Iron deposition in substantia nigra: abnormal iron metabolism, neuroinflammatory mechanism and clinical relevance. Sci Rep 7(1):14973. https://doi.org/10.1038/s41598-017-14721-1
doi: 10.1038/s41598-017-14721-1
pubmed: 29097764
pmcid: 5668412
de Farias CC et al (2017) Parkinson’s disease is accompanied by intertwined alterations in iron metabolism and activated immune-inflammatory and oxidative stress pathways. CNS Neurol Disord Drug Targets 16(4):484–491. https://doi.org/10.2174/1871527316666170223161004
doi: 10.2174/1871527316666170223161004
pubmed: 28240188
Xiong P et al (2012) Baicalin and deferoxamine alleviate iron accumulation in different brain regions of Parkinson’s disease rats. Neural Regen Res 7(27):2092–2098. https://doi.org/10.3969/j.issn.1673-5374.2012.27.002
doi: 10.3969/j.issn.1673-5374.2012.27.002
pubmed: 25558221
pmcid: 4281409
Gurel B et al (2018) Early stage alterations in CA1 extracellular region proteins indicate dysregulation of IL6 and iron homeostasis in the 5XFAD Alzheimer’s disease mouse model. J Alzheimers Dis 61(4):1399–1410. https://doi.org/10.3233/jad-170329
doi: 10.3233/jad-170329
pubmed: 29376847
Kaur D et al (2007) Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiol Aging 28(6):907–913. https://doi.org/10.1016/j.neurobiolaging.2006.04.003
doi: 10.1016/j.neurobiolaging.2006.04.003
pubmed: 16765489
Sayre LM et al (2000) In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem 74(1):270–279. https://doi.org/10.1046/j.1471-4159.2000.0740270.x
doi: 10.1046/j.1471-4159.2000.0740270.x
pubmed: 10617129
D’Mello SR, Kindy MC (2020) Overdosing on iron: elevated iron and degenerative brain disorders. Exp Biol Med 245(16):1444–1473. https://doi.org/10.1177/1535370220953065 . (Maywood)
doi: 10.1177/1535370220953065
Yao MY et al (2021) Role of ferroptosis in neurological diseases. Neurosci Lett 747:135614. https://doi.org/10.1016/j.neulet.2020.135614
doi: 10.1016/j.neulet.2020.135614
pubmed: 33485988
Sun Y et al (2020) The emerging role of ferroptosis in inflammation. Biomed Pharmacother 127:110108. https://doi.org/10.1016/j.biopha.2020.110108
doi: 10.1016/j.biopha.2020.110108
pubmed: 32234642
Yu Y et al (2021) Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov 7(1):193. https://doi.org/10.1038/s41420-021-00579-w
doi: 10.1038/s41420-021-00579-w
pubmed: 34312370
pmcid: 8313570
Qin XY et al (2016) Aberrations in peripheral inflammatory cytokine levels in parkinson disease: a systematic review and meta-analysis. JAMA Neurol 73(11):1316–1324. https://doi.org/10.1001/jamaneurol.2016.2742
doi: 10.1001/jamaneurol.2016.2742
pubmed: 27668667
Hinarejos I et al (2020) Mitochondrial dysfunction, oxidative stress and neuroinflammation in neurodegeneration with brain iron accumulation (NBIA). Antioxidants 9(10). https://doi.org/10.3390/antiox9101020 . (Basel)
Zhou Y et al (2018) Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway. Cancer Med 7(8):4012–4022. https://doi.org/10.1002/cam4.1670
doi: 10.1002/cam4.1670
pubmed: 29989329
pmcid: 6089144
Urrutia PJ, Bórquez DA, Núñez MT (2021) Inflaming the brain with iron. Antioxidants 10(1). https://doi.org/10.3390/antiox10010061 . (Basel)
Martin-Bastida A et al (2021) Iron and inflammation: in vivo and post-mortem studies in Parkinson’s disease. J Neural Transm 128(1):15–25. https://doi.org/10.1007/s00702-020-02271-2 . (Vienna)
doi: 10.1007/s00702-020-02271-2
pubmed: 33079260
Zhang W et al (2014) Role and mechanism of microglial activation in iron-induced selective and progressive dopaminergic neurodegeneration. Mol Neurobiol 49(3):1153–1165. https://doi.org/10.1007/s12035-013-8586-4
doi: 10.1007/s12035-013-8586-4
pubmed: 24277523
Kenkhuis B et al (2021) Iron loading is a prominent feature of activated microglia in Alzheimer’s disease patients. Acta Neuropathol Commun 9(1):27. https://doi.org/10.1186/s40478-021-01126-5
doi: 10.1186/s40478-021-01126-5
pubmed: 33597025
pmcid: 7887813
Urati A et al (2022) Iron-induced cellular in vitro neurotoxic responses in rat C6 cell line. Environ Toxicol 37(8):1968–1978. https://doi.org/10.1002/tox.23543
doi: 10.1002/tox.23543
pubmed: 35446454
Xu Y et al (2020) Astrocyte hepcidin ameliorates neuronal loss through attenuating brain iron deposition and oxidative stress in APP/PS1 mice. Free Radic Biol Med 158:84–95. https://doi.org/10.1016/j.freeradbiomed.2020.07.012
doi: 10.1016/j.freeradbiomed.2020.07.012
pubmed: 32707154
Sola E et al (2023) Cadmium-promoted thyroid hormones disruption mediates ROS, inflammation, Aβ and Tau proteins production, gliosis, spongiosis and neurodegeneration in rat basal forebrain. Chem Biol Interact 375:110428. https://doi.org/10.1016/j.cbi.2023.110428
doi: 10.1016/j.cbi.2023.110428
pubmed: 36868496
Branco V et al (2022) N-acetylcysteine or sodium selenite prevent the p38-mediated production of proinflammatory cytokines by microglia during exposure to mercury (II). Toxics 10(8). https://doi.org/10.3390/toxics10080433
Eskes C, Honegger P, Juillerat-Jeanneret L, Monnet-Tschudi F (2002) Microglial reaction induced by noncytotoxic methylmercury treatment leads to neuroprotection via interactions with astrocytes and IL-6 release. Glia. 37(1):43–52. https://doi.org/10.1002/glia.10019
doi: 10.1002/glia.10019
pubmed: 11746782
Prakash J et al (2014) Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons. Neurochem Res 39(12):2527–2536. https://doi.org/10.1007/s11064-014-1443-7
doi: 10.1007/s11064-014-1443-7
pubmed: 25403619
Zhang P et al (2020) Ferroptosis was more initial in cell death caused by iron overload and its underlying mechanism in Parkinson’s disease. Free Radic Biol Med 152:227–234. https://doi.org/10.1016/j.freeradbiomed.2020.03.015
doi: 10.1016/j.freeradbiomed.2020.03.015
pubmed: 32217194
Iłzecka J, Stelmasiak Z, Dobosz B (2001) Interleukin-1beta converting enzyme/Caspase-1 (ICE/Caspase-1) and soluble APO-1/Fas/CD 95 receptor in amyotrophic lateral sclerosis patients. Acta Neurol Scand 103(4):255–258
pubmed: 11328198
WHO (2021) World failing to address dementia challenge. Web. https://www.who.int/news/item/02-09-2021-world-failing-to-address-dementia-challenge