Effect of glucagon like peptide-1 receptor agonist exenatide, used as an intracranial pressure lowering agent, on cognition in Idiopathic Intracranial Hypertension.


Journal

Eye (London, England)
ISSN: 1476-5454
Titre abrégé: Eye (Lond)
Pays: England
ID NLM: 8703986

Informations de publication

Date de publication:
11 Jan 2024
Historique:
received: 11 08 2023
accepted: 14 12 2023
revised: 14 12 2023
medline: 12 1 2024
pubmed: 12 1 2024
entrez: 11 1 2024
Statut: aheadofprint

Résumé

Cognitive function can be affected in conditions with raised intracranial pressure (ICP) such as idiopathic intracranial hypertension (IIH). Drugs used off label to treat raised ICP also have cognitive side effects, underscoring the unmet need for effective therapeutics which reduce ICP without worsening cognition. The Glucagon Like Peptide-1 (GLP-1) receptor agonist, exenatide, has been shown to significantly reduce ICP in IIH, therefore this study aimed to determine the effects of exenatide on cognition in IIH. This was an exploratory study of the IIH:Pressure trial (ISTCRN 12678718). Women with IIH and telemetric ICP monitors (n = 15) were treated with exenatide (n = 7) or placebo (n = 8) for 12 weeks. Cognitive function was tested using the National Institute of Health Toolbox Cognitive Battery at baseline and 12 weeks. Cognitive performance was impaired in fluid intelligence ((T-score of 50 = population mean), mean (SD) 37.20 (9.87)), attention (33.93 (7.15)) and executive function (38.07 (14.61)). After 12-weeks there was no evidence that exenatide compromised cognition (no differences between exenatide and placebo). Cognition improved in exenatide treated patients in fluid intelligence (baseline 38.4 (8.2), 12 weeks 52.9 (6.6), p = 0.0005), processing speed (baseline 43.7 (9.4), 12 weeks 58.4 (10.4), p = 0.0058) and episodic memory (baseline 49.4 (5.3), 12 weeks 62.1 (13.2), p = 0.0315). In patients with raised ICP due to IIH, exenatide, a drug emerging as an ICP lowering agent, does not adversely impact cognition. This is encouraging and has potential to be relevant when considering prescribing choices to lower ICP.

Sections du résumé

BACKGROUND BACKGROUND
Cognitive function can be affected in conditions with raised intracranial pressure (ICP) such as idiopathic intracranial hypertension (IIH). Drugs used off label to treat raised ICP also have cognitive side effects, underscoring the unmet need for effective therapeutics which reduce ICP without worsening cognition. The Glucagon Like Peptide-1 (GLP-1) receptor agonist, exenatide, has been shown to significantly reduce ICP in IIH, therefore this study aimed to determine the effects of exenatide on cognition in IIH.
METHODS METHODS
This was an exploratory study of the IIH:Pressure trial (ISTCRN 12678718). Women with IIH and telemetric ICP monitors (n = 15) were treated with exenatide (n = 7) or placebo (n = 8) for 12 weeks. Cognitive function was tested using the National Institute of Health Toolbox Cognitive Battery at baseline and 12 weeks.
RESULTS RESULTS
Cognitive performance was impaired in fluid intelligence ((T-score of 50 = population mean), mean (SD) 37.20 (9.87)), attention (33.93 (7.15)) and executive function (38.07 (14.61)). After 12-weeks there was no evidence that exenatide compromised cognition (no differences between exenatide and placebo). Cognition improved in exenatide treated patients in fluid intelligence (baseline 38.4 (8.2), 12 weeks 52.9 (6.6), p = 0.0005), processing speed (baseline 43.7 (9.4), 12 weeks 58.4 (10.4), p = 0.0058) and episodic memory (baseline 49.4 (5.3), 12 weeks 62.1 (13.2), p = 0.0315).
CONCLUSIONS CONCLUSIONS
In patients with raised ICP due to IIH, exenatide, a drug emerging as an ICP lowering agent, does not adversely impact cognition. This is encouraging and has potential to be relevant when considering prescribing choices to lower ICP.

Identifiants

pubmed: 38212401
doi: 10.1038/s41433-023-02908-y
pii: 10.1038/s41433-023-02908-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Pomschar A, Koerte I, Lee S, Laubender RP, Straube A, Heinen F, et al. MRI evidence for altered venous drainage and intracranial compliance in mild traumatic brain injury. PLoS One. 2013;8:e55447 https://doi.org/10.1371/journal.pone.0055447 .
doi: 10.1371/journal.pone.0055447 pubmed: 23405151 pmcid: 3566196
Ropper AH, Shafran B. Brain edema after stroke. Clinical syndrome and intracranial pressure. Arch Neurol. 1984;41:26–9. https://doi.org/10.1001/archneur.1984.04050130032017 .
doi: 10.1001/archneur.1984.04050130032017 pubmed: 6606414
Zoerle T, Lombardo A, Colombo A, Longhi L, Zanier ER, Rampini P, Stocchetti N. Intracranial pressure after subarachnoid hemorrhage. Crit Care Med. 2015;43:168–76. https://doi.org/10.1097/CCM.0000000000000670 .
doi: 10.1097/CCM.0000000000000670 pubmed: 25318385
Grech O, Mollan SP, Wakerley BR, Alimajstorovic Z, Lavery GG, Sinclair AJ. Emerging themes in idiopathic intracranial hypertension. J Neurol. 2020;267:3776–84. https://doi.org/10.1007/s00415-020-10090-4 .
doi: 10.1007/s00415-020-10090-4 pubmed: 32700012 pmcid: 7674362
Mollan SP, Spitzer D, Nicholl DJ. Raised intracranial pressure in those presenting with headache. BMJ. 2018;363:k3252 https://doi.org/10.1136/bmj.k3252 .
doi: 10.1136/bmj.k3252 pubmed: 30287521
Grech O, Clouter A, Mitchell JL, Alimajstorovic Z, Ottridge RS, Yiangou A, et al. Cognitive performance in idiopathic intracranial hypertension and relevance of intracranial pressure. Brain Commun. 2021;3:fcab202 https://doi.org/10.1093/braincomms/fcab202 .
doi: 10.1093/braincomms/fcab202 pubmed: 34704028 pmcid: 8421706
Cazalis F, Feydy A, Valabrègue R, Pélégrini-Issac M, Pierot L, Azouvi P. fMRI study of problem-solving after severe traumatic brain injury. Brain Inj. 2006;20:1019–28. https://doi.org/10.1080/02699050600664384 .
doi: 10.1080/02699050600664384 pubmed: 17060134
Iddon JL, Morgan DJ, Loveday C, Sahakian BJ, Pickard JD. Neuropsychological profile of young adults with spina bifida with or without hydrocephalus. J Neurol Neurosurg Psychiatry. 2004;75:1112–8. https://doi.org/10.1136/jnnp.2003.029058 .
doi: 10.1136/jnnp.2003.029058 pubmed: 15258211 pmcid: 1739163
Haut MW, Petros TV, Frank RG, Lamberty G. Short-term memory processes following closed head injury. Arch Clin Neuropsychol. 1990;5:299–309. https://doi.org/10.1093/arclin/5.3.299 .
doi: 10.1093/arclin/5.3.299 pubmed: 14589689
Vallat-Azouvi C, Weber T, Legrand L, Azouvi P. Working memory after severe traumatic brain injury. J Int Neuropsychol Soc. 2007;13:770–80. https://doi.org/10.1017/S1355617707070993 .
doi: 10.1017/S1355617707070993 pubmed: 17697408
Mollan SP, Wakerley BR, Alimajstorovic Z, Mitchell J, Ottridge R, Yiangou A, et al. IIH Pressure Med: A randomised, sequential, trial of the effect on intracranial pressure of five drugs commonly used in Idiopathic Intracranial Hypertension [abstract]. J Headache Pain. 2021;22:14–14.
Grech, OM James; Yiangou, Andreas; Alimaistorovic, Zerin; Brock, Kristain; Mollan, Susan; Sinclair, Alex Evaluation of cognitive performance with medicines for raised intracranial pressure: implications for spaceflight associated neuro-ocular syndrome [abstract]. Aerosp Med Human Perf. 93 (2022).
Nauck MA, Kleine N, Orskov C, Holst JJ, Willms B, Creutzfeldt W. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1993;36:741–4. https://doi.org/10.1007/BF00401145 .
doi: 10.1007/BF00401145 pubmed: 8405741
Alvarez E, Roncero I, Chowen JA, Thorens B, Blazquez E. Expression of the glucagon-like peptide-1 receptor gene in rat brain. J Neurochem. 1996;66:920–7. https://doi.org/10.1046/j.1471-4159.1996.66030920.x .
doi: 10.1046/j.1471-4159.1996.66030920.x pubmed: 8769850
Carr RD, Larsen MO, Jelic K, Lindgren O, Vikman J, Holst JJ, et al. Secretion and dipeptidyl peptidase-4-mediated metabolism of incretin hormones after a mixed meal or glucose ingestion in obese compared to lean, nondiabetic men. J Clin Endocrinol Metab. 2010;95:872–8. https://doi.org/10.1210/jc.2009-2054 .
doi: 10.1210/jc.2009-2054 pubmed: 20008019
Botfield HF, Uldall MS, Westgate C, Mitchell JL, Hagen SM, Gonzalez AM, et al. A glucagon-like peptide-1 receptor agonist reduces intracranial pressure in a rat model of hydrocephalus. Sci Transl Med. 2017;9:eaan0972 https://doi.org/10.1126/scitranslmed.aan0972 .
doi: 10.1126/scitranslmed.aan0972 pubmed: 28835515
Ast J, Arvaniti A, Fine N, Nasteska D, Ashford FB, Stamataki Z, et al. Super-resolution microscopy compatible fluorescent probes reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics. Nat Commun. 2020;11:467 https://doi.org/10.1038/s41467-020-14309-w .
doi: 10.1038/s41467-020-14309-w pubmed: 31980626 pmcid: 6981144
Scotton WJ, Botfield HF, Westgate CS, Mitchell JL, Yiangou A, Uldall MS, et al. Topiramate is more effective than acetazolamide at lowering intracranial pressure. Cephalalgia. 2019;39:209–18. https://doi.org/10.1177/0333102418776455 .
doi: 10.1177/0333102418776455 pubmed: 29898611
Mitchell JL, Lyons HS, Walker JK, Yiangou A, Grech O, Alimajstorovic Z, et al. The effect of GLP-1RA exenatide on idiopathic intracranial hypertension: a randomized clinical trial. Brain. 2023;146:1821–30. https://doi.org/10.1093/brain/awad003 .
doi: 10.1093/brain/awad003 pubmed: 36907221 pmcid: 10151178
Wang J, Ke T, Zhang X, Chen Y, Liu M, Chen J, Luo W. Effects of acetazolamide on cognitive performance during high-altitude exposure. Neurotoxicol Teratol. 2013;35:28–33. https://doi.org/10.1016/j.ntt.2012.12.003 .
doi: 10.1016/j.ntt.2012.12.003 pubmed: 23280141
Thompson PJ, Baxendale SA, Duncan JS, Sander JW. Effects of topiramate on cognitive function. J Neurol Neurosurg Psychiatry. 2000;69:636–41. https://doi.org/10.1136/jnnp.69.5.636 .
doi: 10.1136/jnnp.69.5.636 pubmed: 11032616 pmcid: 1763392
Friedman DI, Liu GT, Digre KB. Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology. 2013;81:1159–65. https://doi.org/10.1212/WNL.0b013e3182a55f17 .
doi: 10.1212/WNL.0b013e3182a55f17 pubmed: 23966248
Scotton WJ, Mollan SP, Walters T, Doughty S, Botfield H, Markey K, et al. Characterising the patient experience of diagnostic lumbar puncture in idiopathic intracranial hypertension: a cross-sectional online survey. BMJ Open. 2018;8:e020445 https://doi.org/10.1136/bmjopen-2017-020445 .
doi: 10.1136/bmjopen-2017-020445 pubmed: 29848770 pmcid: 5988086
Mollan S, Hemmings K, Herd CP, Denton A, Williamson S, Sinclair AJ. What are the research priorities for idiopathic intracranial hypertension? A priority setting partnership between patients and healthcare professionals. BMJ Open. 2019;9:e026573 https://doi.org/10.1136/bmjopen-2018-026573 .
doi: 10.1136/bmjopen-2018-026573 pubmed: 30878991 pmcid: 6429891
Weintraub S, Dikmen SS, Heaton RK, Tulsky DS, Zelazo PD, Bauer PJ, et al. Cognition assessment using the NIH Toolbox. Neurology. 2013;80:S54–64. https://doi.org/10.1212/WNL.0b013e3182872ded .
doi: 10.1212/WNL.0b013e3182872ded pubmed: 23479546 pmcid: 3662346
Weintraub S, Dikmen SS, Heaton RK, Tulsky DS, Zelazo PD, Slotkin J, et al. The cognition battery of the NIH toolbox for assessment of neurological and behavioral function: validation in an adult sample. J Int Neuropsychol Soc. 2014;20:567–78. https://doi.org/10.1017/S1355617714000320 .
doi: 10.1017/S1355617714000320 pubmed: 24959840 pmcid: 4103959
Li SC, Lindenberger U, Hommel B, Aschersleben G, Prinz W, Baltes PB. Transformations in the couplings among intellectual abilities and constituent cognitive processes across the life span. Psychol Sci. 2004;15:155–63. https://doi.org/10.1111/j.0956-7976.2004.01503003.x .
doi: 10.1111/j.0956-7976.2004.01503003.x pubmed: 15016286
Casaletto KB, Umlauf A, Beaumont J, Gershon R, Slotkin J, Akshoomoff N, Heaton RK. Demographically corrected normative standards for the english version of the NIH toolbox cognition battery. J Int Neuropsychol Soc. 2015;21:378–91. https://doi.org/10.1017/S1355617715000351 .
doi: 10.1017/S1355617715000351 pubmed: 26030001 pmcid: 4490030
Elbanhawy IA, Ramzy GM, Ashour AS, Khedr DM. Cognitive assessment of idiopathic intracranial hypertension patients. Egypt J Neurol, Psychiatry Neurosurg. 2019;55:33 https://doi.org/10.1186/s41983-019-0073-z .
doi: 10.1186/s41983-019-0073-z
Vahedi K, Taupin P, Djomby R, El-Amrani M, Lutz G, Filipetti V, et al. Efficacy and tolerability of acetazolamide in migraine prophylaxis: a randomised placebo-controlled trial. J Neurol. 2002;249:206–11. https://doi.org/10.1007/pl00007866 .
doi: 10.1007/pl00007866 pubmed: 11985388
Fritz N, Glogau S, Hoffmann J, Rademacher M, Elger CE, Helmstaedter C. Efficacy and cognitive side effects of tiagabine and topiramate in patients with epilepsy. Epilepsy Behav. 2005;6:373–81. https://doi.org/10.1016/j.yebeh.2005.01.002 .
doi: 10.1016/j.yebeh.2005.01.002 pubmed: 15820346
Kim SY, Lee HW, Jung DK, Suh CK, Park SP. Cognitive effects of low-dose topiramate compared with oxcarbazepine in epilepsy patients. J Clin Neurol. 2006;2:126–33. https://doi.org/10.3988/jcn.2006.2.2.126 .
doi: 10.3988/jcn.2006.2.2.126 pubmed: 20396496 pmcid: 2854952
An J, Zhou Y, Zhang M, Xie Y, Ke S, Liu L, et al. Exenatide alleviates mitochondrial dysfunction and cognitive impairment in the 5xFAD mouse model of Alzheimer’s disease. Behav Brain Res. 2019;370:111932 https://doi.org/10.1016/j.bbr.2019.111932 .
doi: 10.1016/j.bbr.2019.111932 pubmed: 31082410
Jia XT, Ye-Tian, Yuan-Li, Zhang GJ, Liu ZQ, Di ZL, et al. Exendin-4, a glucagon-like peptide 1 receptor agonist, protects against amyloid-beta peptide-induced impairment of spatial learning and memory in rats. Physiol Behav. 2016;159:72–79. https://doi.org/10.1016/j.physbeh.2016.03.016 .
doi: 10.1016/j.physbeh.2016.03.016 pubmed: 26992957
Wang X, Wang L, Xu Y, Yu Q, Li L, Guo Y. Intranasal administration of Exendin-4 antagonizes Abeta31-35-induced disruption of circadian rhythm and impairment of learning and memory. Aging Clin Exp Res. 2016;28:1259–66. https://doi.org/10.1007/s40520-016-0548-z .
doi: 10.1007/s40520-016-0548-z pubmed: 26920423
Zhou B, Zissimopoulos J, Nadeem H, Crane MA, Goldman D, Romley JA. Association between exenatide use and incidence of Alzheimer’s disease. Alzheimers Dement (N. Y). 2021;7:e12139 https://doi.org/10.1002/trc2.12139 .
doi: 10.1002/trc2.12139 pubmed: 33614900
ClinicalTrials.gov. A Pilot Clinical Trial of Exendin-4 in Alzheimer’s Disease, 2010.
Yri HM, Fagerlund B, Forchhammer HB, Jensen RH. Cognitive function in idiopathic intracranial hypertension: a prospective case-control study. BMJ Open. 2014;4:e004376 https://doi.org/10.1136/bmjopen-2013-004376 .
doi: 10.1136/bmjopen-2013-004376 pubmed: 24713214 pmcid: 3987738

Auteurs

Olivia Grech (O)

Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK.

James L Mitchell (JL)

Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK.
Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2WB, UK.

Hannah S Lyons (HS)

Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK.
Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2WB, UK.

Andreas Yiangou (A)

Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK.
Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2WB, UK.

Mark Thaller (M)

Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK.
Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2WB, UK.

Georgios Tsermoulas (G)

Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK.
Department of Neurosurgery, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2WB, UK.

Kristian Brock (K)

Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, B15 2TT, UK.

Susan P Mollan (SP)

Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK.
Birmingham Neuro-Ophthalmology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2WB, UK.

Alexandra J Sinclair (AJ)

Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK. a.b.sinclair@bham.ac.uk.
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK. a.b.sinclair@bham.ac.uk.
Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2WB, UK. a.b.sinclair@bham.ac.uk.

Classifications MeSH