Finite-Entanglement Scaling of 2D Metals.


Journal

Physical review letters
ISSN: 1079-7114
Titre abrégé: Phys Rev Lett
Pays: United States
ID NLM: 0401141

Informations de publication

Date de publication:
29 Dec 2023
Historique:
received: 17 05 2023
revised: 27 09 2023
accepted: 21 11 2023
medline: 12 1 2024
pubmed: 12 1 2024
entrez: 12 1 2024
Statut: ppublish

Résumé

We extend the study of finite-entanglement scaling from one-dimensional gapless models to two-dimensional systems with a Fermi surface. In particular, we show that the entanglement entropy of a contractible spatial region with linear size L scales as S∼Llog[ξf(L/ξ)] in the optimal tensor network, and hence area-law entangled, state approximation to a metallic state, where f(x) is a scaling function which depends on the shape of the Fermi surface and ξ is a finite correlation length induced by the restricted entanglement. Crucially, the scaling regime can be realized with numerically tractable bond dimensions. We also discuss the implications of the Lieb-Schultz-Mattis theorem at fractional filling for tensor network state approximations of metallic states.

Identifiants

pubmed: 38215387
doi: 10.1103/PhysRevLett.131.266202
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

266202

Auteurs

Quinten Mortier (Q)

Department of Physics, Ghent University, Krijgslaan 281, 9000 Gent, Belgium.

Ming-Hao Li (MH)

Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.

Jutho Haegeman (J)

Department of Physics, Ghent University, Krijgslaan 281, 9000 Gent, Belgium.

Nick Bultinck (N)

Department of Physics, Ghent University, Krijgslaan 281, 9000 Gent, Belgium.
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.

Classifications MeSH